Conservation Genetics

, Volume 16, Issue 2, pp 267–276 | Cite as

Successful reintroduction of an endangered veteran tree specialist: conservation and genetics of the Great Capricorn beetle (Cerambyx cerdo)

Research Article

Abstract

Habitat fragmentation is one of the main threats to biodiversity. Reintroductions or translocations may mitigate its effects by allowing species with limited dispersal ability to exploit otherwise inaccessible habitat patches. Despite the fact that reintroductions are among the most effective conservation measures, they are rarely used for invertebrates. In this study we investigate the potential of reintroductions as a conservation measure for beetles, and present the first genetic results for an endangered veteran tree specialist. After translocation of 10 adults in 1987, a population of the Great Capricorn beetle reappeared in Hluboká nad Vltavou (Czech Republic) in 1990s. Using population genetic analyses of 79 individuals based on nine microsatellite loci and 82 individuals based on the mitochondrial COI gene we assessed the origin of this population, and compared its genetic variation, population structure and demography to the alleged source population (southern Moravia) and to the closest autochthonous population (Třeboňsko). Although the reintroduced and the closest autochthonous populations are geographically close (24 km), their mutual genetic distance was much higher than that between each of them and the geographically distant (>150 km) potential source population in southern Moravia. The genetic diversity of the reintroduced population was the lowest from the three studied populations and represented a subset of the alleged source population suggesting its establishment due to a translocation from southern Moravia. Despite the lower genetic variation at the reintroduced site, our results suggest that reintroductions could serve as a highly effective measure in biodiversity conservation and in some cases it may be the only chance to prevent extirpation of many endangered populations.

Keywords

Xylophagous insect Threatened Saproxylic Doudlebia Oaks 

Supplementary material

10592_2014_656_MOESM1_ESM.doc (348 kb)
Supplementary material 1 (DOC 347 kb)

References

  1. Ahrens D, Fabrizi S, Šipek P, Lago P (2013) Integrative analysis of DNA phylogeography and morphology of the European rose chafer (Cetonia aurata) to infer species taxonomy and patterns of postglacial colonisation in Europe. Mol Phylogenet Evol 39:83–94CrossRefGoogle Scholar
  2. Albert J, Platek M, Cizek L (2012) Vertical stratification and microhabitat selection by the Great Capricorn Beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae) in open-grown, veteran oaks. Eur J Entomol 109:553–559CrossRefGoogle Scholar
  3. Alexander KNA (1998) The links between forest history and biodiversity: the invertebrate fauna of ancient pasture-woodlands in Britain and its conservation. In: Kirby KJ, Watkins C (eds) The ecological history of European forests. CAB International, Wallingford, pp 73–80Google Scholar
  4. Amaral M, Kozol A, French T (1997) Conservation status and reintroduction of the endangered American burying beetle. Northeast Nat 4:121–132CrossRefGoogle Scholar
  5. Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25CrossRefPubMedGoogle Scholar
  6. Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Trizzino M, Antonini G, De Biase A (2009) Data on molecular taxonomy and genetic diversification of the European Hermit beetles, a species-complex of endangered insects (Coleoptera: Scarabaeidae, Cetoniinae, Osmoderma). J Zool Sys Evol Res 47:88–95CrossRefGoogle Scholar
  7. Bajomi B, Pullin AS, Stewart GB, Takács-Sánta A (2010) Bias and dispersal in the animal reintroduction literature. Oryx 44:358–365CrossRefGoogle Scholar
  8. Beebee TJC (2007) Population structure and its implications for conservation of the great silver beetle Hydrophilus piceus in Britain. Freshw Biol 52:2101–2111CrossRefGoogle Scholar
  9. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000, Universite de Montpellier II, Montpellier. http://www.genetix.univ-montp2.fr/genetix/intro.htm. Accessed 22 Jan 2014
  10. Berg A, Ehnstrom B, Gustavsson L, Hallingback T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat association. Conserv Biol 8:718–731CrossRefGoogle Scholar
  11. Buse J, Schröder T, Assmann B (2007) Modelling habitat and spatial distribution of an endangered longhorn beetle—A case study for saproxylic insect conservation. Biol Conserv 137:372–381CrossRefGoogle Scholar
  12. Buse J, Ranius T, Assmann B (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conserv Biol 22:329–337CrossRefPubMedGoogle Scholar
  13. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  14. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefPubMedGoogle Scholar
  15. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  16. Council of the European Communities (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. The Member States, OJ L 206Google Scholar
  17. David G, Giffard B, Pioul D, Jactel H (2013) Dispersal capacity of Monochamus galloprovincialis, the European vector of the pine wood nematode, on flight mills. J Appl Entomol (in press)Google Scholar
  18. Do C, Waples RS, Pell D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N e) from genetic data. Mol Ecol Res 14:209–214CrossRefGoogle Scholar
  19. Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L (2011) Demography and dispersal ability of a threatened saproxylic beetle: A mark-recapture study of the Rosalia Longicorn (Rosalia alpina). PLoS ONE. doi:10.1371/journal.pone.0021345 PubMedCentralPubMedGoogle Scholar
  20. Drag L, Kosnar J, Cizek L (2013) Development and characterization of ten polymorphic microsatellite loci for the Great Capricorn beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae). Conserv Genet Res 5:907–909CrossRefGoogle Scholar
  21. Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  22. Ehnström B, Axelsson R (2002) Insektsgnag i bark och ved. [Insect Galleries in Bark and Wood.] ArtDatabanken SLU, Uppsala, Sweden [in Swedish]Google Scholar
  23. Ellwanger G (2009) Conservation status of saproxylic beetles listed in Annexes II and IV of the Habitats Directive at a national (Germany) and biogeographical level. In: Buse J, Alexander KNA, Ranius T, Assmann T (ed) Saproxlic beetles: their role and diversity in european woodland and tree habitats. Proceedings of the 5th symposium and workshop on the conservation of saproxylic beetles. Lüneberg, Germany, pp 107–118Google Scholar
  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  25. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  26. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Gibbs JP, Marquez C, Sterling EJ (2008) The Role of Endangered Species Reintroduction in Ecosystem Restoration: Tortoise-Cactus Interactions on Española Island, Galápagos. Restor Ecol 16:88–93CrossRefGoogle Scholar
  28. Goudet J (2002) Fstat, a Program to estimate and test gene diversities and fixation indices, version 2.9.3.2. http://www.unil.ch/popgen/softwares/fstat.htm. Accessed 22 Jan 2014
  29. Hanski IA (2005) Landscape fragmentation, biodiversity loss and the societal response. The longterm consequences of our use of natural resources may be surprising and unpleasant. EMBO Rep 6:388–392CrossRefPubMedCentralPubMedGoogle Scholar
  30. Hanski IA, Gilpin ME (1997) Metapopulation biology: ecology, genetics & evolution. Academic Press, LondonGoogle Scholar
  31. Hauck D, Cizek L (2006) Inventarizace stromů potenciálně vhodných pro páchníka hnědého (Osmoderma eremita) a tesaříka obrovského (Cerambyx cerdo) v Hluboké nad Vltavou v roce 2006. [Inventory of Trees Suitable for the Hermit Beetle (Osmoderma eremita) and the Great Capricorn Beetle (Cerambyx cerdo) in Hluboka nad Vltavou in 2006.] Report for AOPK, Prague, Czech Republic [in Czech]Google Scholar
  32. Hayward MW (2011) Using the IUCN Red List to determine effective conservation strategies. Biodivers Conserv 20:2563–2573CrossRefGoogle Scholar
  33. IUCN (2013) IUCN red list of threatened species. www.iucnredlist.org. Accessed 22 Jan 2014
  34. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  35. Jonsson M, Johannesen J, Seitz A (2003) Comparative genetic structure of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulates. J Insect Conserv 7:111–124CrossRefGoogle Scholar
  36. Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—Lessons for dead wood management. Silva Fenn 39:289–309CrossRefGoogle Scholar
  37. Kajtoch L, Mazur M, Kubisz D, Mazur MA, Babik W (2014) Low effective population sizes and limited connectivity in xerothermic beetles: implications for the conservation of an endangered habitat. Anim Conserv. doi:10.1111/acv.12110 Google Scholar
  38. Karlsson M (2012) Qualities and supply of suitable dead wood for Ceruchus chrysomelinus and its dispersal pattern in a translocated population. Master’s thesis, Swedish University of Agricultural Sciences, Uppsala, SwedenGoogle Scholar
  39. Kletečka Z, Klečka J (2003) Distribution of Cerambyx cerdo L. (Coleoptera, Cerambycidae) in South Bohemia. Acta Musei Bohemiae Meridionalis in České Budějovice 43:71–78Google Scholar
  40. Knisley CB, Hill JM, Scherer AM (2005) Translocation of threatened tiger beetle Cicindela dorsalis dorsalis (Coleoptera: Cicindelidae), to Sandy Hook, New Jersey. Ann Entomol Soc Am 98:552–557CrossRefGoogle Scholar
  41. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  42. Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305CrossRefPubMedGoogle Scholar
  43. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  44. Martín J, Cabezas J, Buyolo T, Patón D (2005) The relatonship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forest. Forest Ecol Manag 216:166–174CrossRefGoogle Scholar
  45. Miklín J, Čížek (2014) Erasing a European biodiversity hot-spot: open woodlands, veteran trees and mature forests succumb to forestry intensification, logging, and succession in a UNESCO Biosphere Reserve. J Nat Conserv 22:35–41CrossRefGoogle Scholar
  46. Müller J, Bussler H, Kneib T (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. J Insect Conserv 12:107–124CrossRefGoogle Scholar
  47. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  48. Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, LuxembourgGoogle Scholar
  49. Nothnagle PJ (2002) Population augmentation of the Puritan tiger beetle, Cicindela puritana, through transplantation of larvae to Massachusetts. Unpublished report to the US fish and wildlife service Silvio O. Conte national fish and wildlife refuge, Turners Falls, MassachusettsGoogle Scholar
  50. Oleksa A, Chybicki IJ, Gawroński R, Svensson GP, Burczyk J (2013) Isolation by distance in saproxylic beetles may increase with niche specialization. J Insect Conserv 17:219–233CrossRefGoogle Scholar
  51. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  52. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedCentralPubMedGoogle Scholar
  53. Peel D, Waples RS, Macbeth GM, Do C, Ovenden JR (2013) Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol Ecol Res 13:243–253CrossRefGoogle Scholar
  54. Perrotti L, Prospero ML, Spevak EM (2001) The effort to save the endangered American burying beetle on a shoe-string budget: making conservation resources go farther with invertebrates. AZAA Conf Proc 2001:189–194Google Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  56. Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188CrossRefGoogle Scholar
  57. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  58. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  59. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  60. Sebek P, Altman J, Platek M, Cizek L (2013) Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS ONE DOI:10.1371/journal.pone.0060456
  61. Seddon PJ, Armstrong DP, Maloney R (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312CrossRefPubMedGoogle Scholar
  62. Sherley GH, Stringer IAN, Parrish GR (2010) Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand. Science for conservation 303, Department of Conservation, WellingtonGoogle Scholar
  63. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  64. Sláma MEF (1998) Tesaříkovití—Cerambycidae České Republiky a Slovenské Republiky. [Longhorn Beetles – Cerambycidae of the Czech Republic and Slovak Republic.] By the author, Krhanice, Czech Republic [in Czech]Google Scholar
  65. Smith MT, Bancroft J, Li G, Gao R, Teale S (2001) Dispersal of Anoplophora glabripennis (Cerambycidae). Environ Entomol 30:1036–1040CrossRefGoogle Scholar
  66. Solano E, Mancini E, Ciucci P, Mason F, Audisio P, Antonini G (2013) The EU protected taxon Morimus funereus Mulsant, 1862 (Coleoptera: Cerambycidae) and its western Palaearctic allies: systematics and conservation outcomes. Conserv Genet 14:683–694CrossRefGoogle Scholar
  67. Starzyk JR (2004) Cerambyx cerdo (Linnaeus, 1758), Kozioróg dębosz. [Cerambyx cerdo (Linnaeus, 1758), the great capricorn beetle.]. In: Głowacinski Z, Nowacki J (ed) Polska czerwona ksiega zwierzat. Bezkregowce. [Polish Red Data Book of Animals. Invertebrates.] IOP PAN Kraków, AR Poznan, Poland, pp 148–149 [in Polish]Google Scholar
  68. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimation. Genetics 132:619–633PubMedCentralPubMedGoogle Scholar
  69. Torres-Vila LM, Sánchez-González Á, Merino-Martínez J, Ponce-Escudero F, Conejo-Rodríguez Y, Martín-Vertedor D, Ferrero-García JJ (2013) Mark–recapture of Cerambyx welensii in dehesa woodlands: dispersal behaviour, population density, and mass trapping efficiency with low trap densities. Entomol Exp Appl 149:273–281CrossRefGoogle Scholar
  70. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756CrossRefGoogle Scholar
  71. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–266CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  2. 2.Institute of EntomologyBiology Centre ASCR, v. v. i.Ceske BudejoviceCzech Republic

Personalised recommendations