Skip to main content

Advertisement

Log in

Connectivity and gene flow among Eastern Tiger Salamander (Ambystoma tigrinum) populations in highly modified anthropogenic landscapes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  CAS  PubMed  Google Scholar 

  • Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc R Soc Lond B 271:1293–1302

    Article  Google Scholar 

  • Apodaca JJ, Rissler LJ, Godwin JC (2012) Population genetic structure and gene flow in a heavily disturbed habitat: implications for the management of the imperiled Red Hills salamander (Phaeognathus hubrichti). Conserv Genet 13:913–923

    Article  Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat-split and the global decline of amphibians. Science 318:1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Beebee TJC (2005) Conservation genetics of amphibians. Heredity 95:423–427

    Article  CAS  PubMed  Google Scholar 

  • Beebee TJC (2010) Genetics in field ecology and conservation. In: Dodd CK (ed) Amphibian conservation and ecology: a handbook of techniques. Oxford University Press, New York, pp 407–427

    Google Scholar 

  • Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125(271–285):405

    Google Scholar 

  • Chiucci JE, Gibbs HL (2010) Similarity of contemporary and historical geneflow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5435–5458

    Google Scholar 

  • Church SA, Kraus JM, Mitchell JC, Church DR, Taylor DR (2003) Evidence for multiple Pleistocene refugia in the postglacial expansion of the eastern tiger salamander, Ambystoma tigrinum tigrinum. Evolution 52:372–383

    Article  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Article  PubMed  Google Scholar 

  • Curtis JMR, Taylor EB (2003) The genetic structure of costal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54

    Article  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conerv 139:247–257

    Google Scholar 

  • Cushman SA, Wasserman TN, Landguth EL, Shirk AJ (2013) Re-evaluating causal modeling with mantel tests in landsacpe genetics. Diversity 5:51–72

  • Dudaniec RY, Spear SF, Richardson JS, Storfer A (2012) Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS One 7(5):e36769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for 19 visualizing STRUCTURE output and implementing the Evanno method. 4:359–361. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Edenhamn E, Höggren M, Carlson A (2000) Genetic diversity and fitness in peripheral and central populations of the European tree frog Hyla arborea. Hereditas 133:115–122

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frankham R (1995) Effective population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fry J, Xian G, Jin S, Dewitz J, Homer C, Yang L, Barnes C, Herold N, Wickham J (2011) Completion of the 2006 National Land Cover Database for the Conterminous United States. PE&RS 77:858–864

    Google Scholar 

  • Funk WC, Tallmon DA, Allendorf FW (1999) Small effective population size in the long-toed salamander. Mol Ecol 8:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Garner TWJ, Pearman PB, Angelone S (2004) Genetic diversity across a vertebrate species’ range: a test of the central-peripheral hypothesis. Mol Ecol 13:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecol 13:263–268

    Article  Google Scholar 

  • Gopurenko D, Williams RN, McCormick CR, DeWoody JA (2006) Insights into the mating habits of the tiger salamander (Ambystoma tigrinum tigrinum) as revealed by genetic parentage analyses. Mol Ecol 15:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J, Raymond M, DeMeeus T, Rousset F (1996) Testing differentiation in diploid 20 populations. Genetics 144:1933–1940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwald KR, Purrenhage JL, Savage WK (2009a) Landcover predicts isolation in Ambystoma salamanders across region and species. Biol Conserv 142:2493–2500

    Article  Google Scholar 

  • Greenwald KR, Gibbs HL, Waite TA (2009b) Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv Biol 25:1232–1241

    Article  Google Scholar 

  • Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:336–344

  • Hoban S, Borkowski DS, Brosi SL, McCleary TL, Thompson LM, McLachlan JS, Pereira MA, Schlarbaum SE, Romero-Severson J (2010) Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: a product of range shifts, not ecological marginality or recent population decline. Mol Ecol 19:4876–4891

    Article  PubMed  Google Scholar 

  • Hunter Guerry (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conserv Biol 16:745–754

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jehle R, Arntzen JW (2002) Review: microsatellite markers in amphibian conservation genetics. Herpetol J 12:9

    Google Scholar 

  • Johansson M, Primmer CR, Merlia J (2006) History vs. current demography: explaining the genetic population structure of the common frog, Rana temporaria. Mol Ecol 15:975–983

    Article  CAS  PubMed  Google Scholar 

  • Jones OR, Wang J (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Res 10:551–555

    Article  Google Scholar 

  • Lamoureux VS, Madison DM (1999) Overwintering habitats of radio-implanted green frogs, Rana clamitans. J Herpetol 33:430–435

    Article  Google Scholar 

  • Lamoureux VS, Maerz JC, Madison DM (2002) Premigratory autumn foraging forays in the green frog, Rana clamitans. J Herpetol 36:245–254

    Article  Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760

    Article  Google Scholar 

  • Loss SR, Will T, Marra PP (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396

    Article  PubMed  Google Scholar 

  • Loyd KAT, Hernandez SM, Carroll JP, Abernathy KJ, Marshall GJ (2013) Quantifying free-roaming domestic cat predation using animal-borne video cameras. Biol Conserv 160:183–189

    Article  Google Scholar 

  • Madison DM, Farrand L (1998) Habitat use during breeding and emigration in radio-implanted tiger salamanders, Ambystoma tigrinum. Copeia 1998:402-410

  • Marsack K, Swanson BJ (2009) A genetic analysis of the impact of generation time and road- based habitat fragmentation on eastern box turtles (Terrapene c. carolina). Copeia 4:647–652

    Article  Google Scholar 

  • McDonough C, Paton PWC (2007) Salamander dispersal across a forested landscape fragmented by a golf course. J Wildl Manag 71:1163–1169

    Article  Google Scholar 

  • McRae BH, Shah VB (2009) Circuitscape user’s guide. The University of California, Santa Barbara. http://www.circuitscape.org

  • Mech SG, Storfer A, Ernst JA, Reudink MW, Maloney SC (2003) Polymorphic microsatellite loci for tiger salamanders, Ambystoma tigrinum. Mol Ecol Notes 3:79–81

    Article  CAS  Google Scholar 

  • Parra-Olea G, Recuero E, Zamudio KR (2007) Polymorphic microsatellite markers for Mexican salamanders of the genus Ambystoma. Mol Ecol Notes 7:818–820

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rittenhouse TAG, Semlitsch RD (2006) Grasslands as movement barriers for a forest-associated salamander: migration behavior of adult and juvenile salamanders as a distinct habitat edge. Biol Conserv 131:14–22

    Article  Google Scholar 

  • Rittenhouse TAG, Semlitsch RD (2007) Postbreeding habitat use of wood frogs in a Missouri oak-hickory forest. J Herpetol 41:645–653

    Article  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) Passage: pattern analysis, spatial statistics, and geographic exegesis. V. 2. Methods Ecol Evol 2:229–232

    Article  Google Scholar 

  • Rosenburg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rothermel BB, Semlitsch RD (2002) An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Con Biol 16(1324–502):1332

    Google Scholar 

  • Routman E (1993) Population structure and genetic diversity of metamorphic and paedomorphic populations of the tiger salamander, Ambystoma tigrinum. J Evol Biol 6:329–357

    Article  Google Scholar 

  • Savage WK, Fremier AK, Shaffer HB (2010) Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol Ecol 19:3301–3314

    Article  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: A software program for population genetics data analysis (version 2.0). Genetics and Biometry Lab, Department of Anthropology, University of Geneva Switzerland

  • Semlitsch RD (1998) Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conserv Biol 12:1113–1119

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17:1219–1228

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambysotma tigrinum) in Yellowstone National Park. Conserv Genet 7:605–611

    Article  Google Scholar 

  • Storfer A (1999) Gene flow and population subdivision in the streamside salamander, Ambystoma barbouri. Copeia 1999:174–181

    Article  Google Scholar 

  • Tallmon DA, Funk WC, Dunlap WW, Allendorf FW (2000) Genetic differentiation among long- toed salamander (Ambystoma macrodactylum) populations. Copeia 2000:27–35

    Article  Google Scholar 

  • Titus VR, (2013) Movements, connectivity, and management: conserving the New York State 23 endangered eastern tiger salamander. Dissertation, Binghamton University

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang IJ (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164

    Article  PubMed  Google Scholar 

  • Wang IJ, Savage WK, Shaffer HB (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Wang IJ, Johnson JR, Johnson BB, Shaffer HB (2011) Effective population size is strongly correlated with breeding pond size in the endangered California tiger salamander, Ambystoma californiense. Conserv Genet 12:911–920

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williams RN, DeWoody JA (2004) Fluorescent dUTP helps characterize 10 novel tetranucleotide microsatellites from an enriched salamander (Ambystoma texanum) genomic library. Mol Ecol Notes 4:17–19

    Article  CAS  Google Scholar 

  • Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274

    Article  PubMed  Google Scholar 

  • Zellmer AJ, Knowles L (2009) Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Al Breisch and Dan Rosenblatt of the New York State Department of Environmental Conservation, and Dave Golden of the New Jersey Division of Fish and Wildlife, for support with population sampling and permits. All sample were collected according to approved Brookhaven National Laboratory IACUC #347. This research was funded in part by State Wildlife Grant T-2-2 from the U.S. Fish and Wildlife Service (USFWS) to the New York State Department of Environmental Conservation (NYSDEC), an Upstate Herpetological Association Research Grant to VT, and an NSF Population Evolutionary Processes award to KZ. RCB was supported by a Cornell University Presidential Life Sciences Fellowship and CGB was supported by a Fulbright/CAPES Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valorie R. Titus.

Appendix

Appendix

See Tables 4, 5, 6, 7

Table 4 National Land Cover Data (NLCD) categories and corresponding resistance values adapted from Compton et al. (2007) and Greenwald et al. (2009b)
Table 5 Genetic variation at 12 microsatellite loci in populations of A. tigrinum collected from 2004 to 2008. N equals the number of individuals genotyped at each breeding site
Table 6 Average pairwise multi-locus F ST between 17 New York and 9 New Jersey breeding ponds
Table 7 Pairwise euclidean distances (m) among sampling ponds in New York and New Jersey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titus, V.R., Bell, R.C., Becker, C.G. et al. Connectivity and gene flow among Eastern Tiger Salamander (Ambystoma tigrinum) populations in highly modified anthropogenic landscapes. Conserv Genet 15, 1447–1462 (2014). https://doi.org/10.1007/s10592-014-0629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0629-5

Keywords

Navigation