Conservation Genetics

, Volume 15, Issue 6, pp 1371–1379 | Cite as

Correlates of dispersal extent predict the degree of population genetic structuring in bats

  • Lynne E. BurnsEmail author
  • Hugh G. Broders
Research Article


Dispersal is essential for maintaining demographic and genetic connectivity. For bats, correlates of dispersal extent such as morphology and movement dynamics are reported as having an influence on population genetic structure although these traits exhibit co-variance which has not been previously examined. We used a principal components framework with phylogenetically independent contrasts to compare five dispersal extent predictors (wing loading, aspect ratio, geographic range size, migratory status and median latitude) with population genetic structure among bats. We found that high wing loading values and migration negatively correlate with genetic structure after accounting for co-variance. These findings suggest that bats that can achieve higher flight speeds and migrate seasonally have higher gene flow and resultant genetic connectivity relative to bats that fly slower and do not migrate. These results represent a step towards understanding factors that shaped the genetic structure of bat populations.


Bats Dispersal Migration Wing loading Population genetic structure 



We thank H. Whitehead, M. Leonard, A. Pinder, T. Frasier and two anonymous reviewers for thoughtful discussion and comments that greatly improved this manuscript. G. Baker and C. Garroway provided assistance with the GIS and R analysis, respectively. This research was funded by an NSERC post-graduate scholarship (LEB) and NSERC Discovery Grant (HGB).

Supplementary material

10592_2014_623_MOESM1_ESM.docx (135 kb)
Supplementary material 1 (DOCX 134 kb)
10592_2014_623_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (DOCX 24 kb)


  1. Aldridge DJN, Rautenbach ILN (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778CrossRefGoogle Scholar
  2. Almeida FC (2009) The phylogenetic relationships of cynopterine fruit bats (Chiroptera: Pteropodidae: Cynopeterinae). Mol Phylogenet Evol 53:772–783PubMedCrossRefGoogle Scholar
  3. Altringham JD (2011) Bats: from evolution to conservation, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  4. Ammerman LK, Lee DN, Tipps TM (2012) First molecular phylogenetic insights into the evolution of free-tailed bats in the subfamily Molossinae (Molossidae, Chiroptera). J Mammal 93(1):12–28CrossRefGoogle Scholar
  5. Anthony LL, Blumstein DT (2000) Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne. Biol Conserv 95:303–315CrossRefGoogle Scholar
  6. Baker RJ, Bininda-Emonds ORP, Mantilla-Meluk H, Porter CA, Van den Bussche RA (2012) Molecular time scale of diversification of feeding strategy and morphology in New World Leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats. Cambridge University Press, Cambridge, pp 385–409CrossRefGoogle Scholar
  7. Barrowclough GF (1983) Biochemical studies of microevolutionary processes. In: Brush AH, Clark GAJ (eds) Perspectives in Ornithology: essays presented for the centennial of the American Ornithologists’ Union. Cambridge University Press, New York, pp 257–283Google Scholar
  8. Bisson I-A, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS ONE 4(10):e7504. doi: 10.371/journal.pone.0007504
  9. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45PubMedCrossRefGoogle Scholar
  10. Bowlin MS, Wikelski M (2008) Pointed wings, low wing loading and calm air reduce migratory flight costs in songbirds. PLoS ONE 3(5):e2154PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83(7):2049–2055CrossRefGoogle Scholar
  12. Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc Lond B 275:1803–1809CrossRefGoogle Scholar
  13. Burland TM, Worthington Wilmer J (2001) Seeing in the dark: molecular approaches to the study of bat populations. Biol Rev 76:389–409PubMedCrossRefGoogle Scholar
  14. Clobert J, Le Galliard J-F, Cote J, Meylan S, Masso M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209PubMedCrossRefGoogle Scholar
  15. Cryan PM, Bogan MA, Rye RO, Landis GP, Kester CL (2004) Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. J Mammal 85(5):995–1001CrossRefGoogle Scholar
  16. Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264PubMedCrossRefGoogle Scholar
  17. Dool SE, Puechmaille SJ, Dietz C, Juste J, Ibáñez C, Hulva P, Roue SG, Petit E, Jones G, Russo D, Toffoli R, Viglino A, Martinoli A, Rossiter SJ, Teeling EC (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070PubMedCrossRefGoogle Scholar
  18. Entwistle AC, Racey PA, Speakman JR (2000) Social and population structure of a gleaning bat, Plecotus auritus. J Zool Lond 252(1):11–17CrossRefGoogle Scholar
  19. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1311:479–491Google Scholar
  20. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15CrossRefGoogle Scholar
  21. Fleming TH, Eby P (2003) Ecology of bat migration. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 156–197Google Scholar
  22. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchowski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682PubMedCrossRefGoogle Scholar
  23. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59(8):1633–1638PubMedCrossRefGoogle Scholar
  24. Hendry PW (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318CrossRefGoogle Scholar
  25. Hewitt GM, Butlin RK (1997) Causes and consequences of population structure. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Science Ltd., Oxford, pp 203–277Google Scholar
  26. Holt RD, Lawton JH, Gaston KJ (1997) On the relationship between range size and local abundance: back to basics. Oikos 78:183–190CrossRefGoogle Scholar
  27. Hoofer SR, Van den Bussche RA (2003) Molecular phylogenetics of the Chiropteran family Vespertilionidae. Acta Chiropterol 5(1):1–63CrossRefGoogle Scholar
  28. Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L (2005) Bat migrations in Europe: a review of banding data and literature. Naturschuta und Biologische Vielfalt Heft 28. Federal Agency for Nature Conservation, BonnGoogle Scholar
  29. IUCN Red List of Threatened Species. Version 2012.2 (2012) Accessed 10 Jan 2013
  30. Jones KE, Purvis A, Gittleman JL (2003) Biological correlates of extinction risk in bats. Am Nat 161(4):601–614PubMedCrossRefGoogle Scholar
  31. Kerth G (2008) Causes and consequences of sociality in bats. Bioscience 58(8):737–746CrossRefGoogle Scholar
  32. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84(8):2007–2010CrossRefGoogle Scholar
  33. Laube I, Korntheuer H, Schwager M, Trautmann S, Rahbek C, Bohning-Gaese K (2013) Towards a more mechanistic understanding of traits and range sizes. Glob Ecol Biogeogr 22:233–241CrossRefGoogle Scholar
  34. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18Google Scholar
  35. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051PubMedCrossRefGoogle Scholar
  36. McCracken GF (1984) Social dispersion and genetic variation in two species of Emballonurid bats. Z Tierpsychol 66(1):55–69CrossRefGoogle Scholar
  37. McCracken GF, Bradbury JW (1981) Social organization and kinship in the polygynous bat Phyllostomus hastatus. Behav Ecol Sociobiol 8(1):11–34. doi: 10.1007/bf00302840 CrossRefGoogle Scholar
  38. McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic Press, San Diego, pp 321–362CrossRefGoogle Scholar
  39. McGuire LP, Ratcliffe JM (2011) Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species. Biol Lett 7:233–236PubMedCentralPubMedCrossRefGoogle Scholar
  40. Miller MP, Mullins TD, Parrish JW, Walters JR, Haig SM (2012) Variation in migratory behavior influences regional genetic diversity and structure among American Kestrel populations (Falco sparverius) in North America. J Hered 103(4):503–514PubMedCrossRefGoogle Scholar
  41. Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24(7):1553–1561PubMedCrossRefGoogle Scholar
  42. Moussy C, Hosken DJ, Mathews F, Smith GC, Aegerter J, Bearhop S (2012) Migration and dispersal patterns of bats and their influence on genetic structure. Mamm Rev 43(3):183–195. doi: 10.1111/j.1365-2907.2012.00218.x
  43. Muscarella RA, Murray KL, Ortt D, Russell AL, Fleming TH (2011) Exploring demographic, physical, and historical explanations for the genetic structure of two lineages of Greater Antillean bats. PLoS ONE 6(3):e17704. doi: 10.1371/journal.pone.0017704
  44. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet Lond 41:225CrossRefGoogle Scholar
  45. Norberg UM, Raynor JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B 316(1179):335–427CrossRefGoogle Scholar
  46. Olival KJ (2012) Evolutionary and ecological correlates of population genetic structure in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats. Cambridge University Press, Cambridge, pp 267–316CrossRefGoogle Scholar
  47. Orme CDL (2012) The caper package: comparative analyses in phylogenetics and evolution in R. Accessed 8 Aug 2013
  48. Paar J, Oldroyd BP, Huettinger E, Kastberger G (2004) Genetic structure of an Apis dorsata population: the significance of migration and colony aggregation. J Hered 95(2):119–126PubMedCrossRefGoogle Scholar
  49. Pagès J (2004) Analyse factorielle de données mixtes. Rev Stat Appl LII(4):93–111Google Scholar
  50. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67(4):518–536CrossRefGoogle Scholar
  51. Peterson AT, Heaney LW (1993) Genetic differentiation in Philippine bats of the genera Cynopterus and Haplonycteris. Biol J Linn Soc 49:203–218CrossRefGoogle Scholar
  52. Purvis A, Gittleman JL, Cowlishae G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952CrossRefGoogle Scholar
  53. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. Accessed 22 July 2013
  54. Rossiter SJ, Zubaid A, Mohd-Adnan A, Struebig MJ, Kunz TH, Gopal S, Petit E, Kingston T (2012) Social organization and genetic structure: insights from codistributed bat populations. Mol Ecol 21:647–661PubMedCrossRefGoogle Scholar
  55. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedCentralPubMedGoogle Scholar
  56. Ruedi M, Castella V (2003) Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Mol Ecol 12:1527–1540PubMedCrossRefGoogle Scholar
  57. Russell AL, Medellin RA, McCracken GF (2005) Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mol Ecol 14:2207–2222PubMedCrossRefGoogle Scholar
  58. Safi K, Kerth G (2004) A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv Biol 18(5):1293–1303CrossRefGoogle Scholar
  59. Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81:174–184PubMedCrossRefGoogle Scholar
  60. Silva M, Downing JA (1995) CRC handbook of mammalian body masses. CRC Press, Boca RatonGoogle Scholar
  61. Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  62. Stadelmann B, Lin LK, Kunz TH, Ruedi M (2007) Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43(1):32–48PubMedCrossRefGoogle Scholar
  63. Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642PubMedGoogle Scholar
  64. Storz JF (1999) Genetic consequences of mammalian social structure. J Mammal 80(2):553–569CrossRefGoogle Scholar
  65. Tabachnick BG, Fidell LS (2006) Using multivariate statistics, 5th edn. Harper Collins College Publisher, New YorkGoogle Scholar
  66. Taylor PJ, Goodman SM, Schoeman MC, Ratrimomanarivo FH, Lamb JL (2012) Wing loading correlates negatively with genetic structuring of eight Afro-Malagasy bat species (Molossidae). Acta Chiropterol 14(1):53–62CrossRefGoogle Scholar
  67. Turmelle AS, Olival KJ (2009) Correlates of viral richness in bats (Order Chiroptera). EcoHealth 6:522–539PubMedCrossRefGoogle Scholar
  68. van Staaden MJ (1995) Breeding tactics, social structure and genetic variation in mammals: problems and prospects. Acta Theriol Suppl 3:165–182CrossRefGoogle Scholar
  69. Whitlock MC (2011) Gst′ and D do not replace Fst. Mol Ecol 20:1083–1091PubMedCrossRefGoogle Scholar
  70. Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: a trait-based approach. J Anim Ecol 82:211–221PubMedCrossRefGoogle Scholar
  71. Wilkinson GS (1985) The social organization of the common vampire bat II. Mating system, genetic structure, and relatedness. Behav Ecol Sociobiol 17:123–134Google Scholar
  72. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of BiologyDalhousie University, Life Sciences CentreHalifaxCanada
  2. 2.Department of BiologySaint Mary’s UniversityHalifaxCanada

Personalised recommendations