Conservation Genetics

, Volume 15, Issue 5, pp 1111–1121 | Cite as

Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population

  • Philip W. Hedrick
  • Rolf O. Peterson
  • Leah M. Vucetich
  • Jennifer R. Adams
  • John A. Vucetich
Research Article

Abstract

While genetic rescue is known to benefit population viability, the duration of that benefit is poorly understood. We document what appears to be the waning benefit of genetic rescue after approximately 2–3 generations for the wolf population in Isle Royale National Park. The fitness benefit of genetic rescue declined because of inbreeding and population abundance declined when the inbred individuals exhibited low reproduction and survival. Only detailed studies of other cases will reveal what aspects of these dynamics represent general features of genetic rescue. We also present evidence indicating that numerous past immigration events have likely gone undetected. This finding is of particular significance because the Isle Royale wolf population has maintained good population viability for decades even though it was small and thought to be isolated from the mainland population of wolves. Past gene flow also suggests that human-assisted gene flow is necessary to conserve the ecosystem services associated with predation, since climate warming has reduced the frequency of ice bridges and with it the only opportunity for unassisted gene flow.

Keywords

Ancestry Gene flow Heterozygosity Inbreeding Pedigree Relatedness 

References

  1. Adams JR, Vucetich LM, Hedrick PW, Peterson RO, Vucetich JA (2011) Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proc R Soc B 278:3336–3344PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson TM, vonHoldt BM, Candille SI, Musiani M, Greco C, Stahler DR, Smith DW, Padhukasahasran B, Randi E, Leonard JA, Bustamante CD, Ostrander EA, Tang H, Wayne RK, Barsh GS (2009) Molecular and evolutionary history of melanism in North American gray wolves. Science 323:1339–1343PubMedPubMedCentralCrossRefGoogle Scholar
  3. Austin JA, Colman SM (2007) Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys Res Lett 34:L06604. doi:10.1029/2006GL029021 CrossRefGoogle Scholar
  4. Ballou JD (1983) Calculating inbreeding coefficients from pedigrees. In: Schonewald-Cox M, Chambers SM, MacBryde B, Thomas L (eds) Genetics and conservation. Benjamin/Cummings Publishing, Menlo Park, pp 509–523Google Scholar
  5. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031PubMedCrossRefGoogle Scholar
  6. Bensch S, Andrén H, Hansson B, Pedersen HC, Sand H, Sejberg D, Wabakken P, Äkesson M, Liberg O (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS One 1:e72PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bijlsma R, Westerhof DD, Roekx LP, Pen I (2010) Dynamics of genetic rescue in inbred Drosophila melanogaster populations. Conserv Genet 11:449–462CrossRefGoogle Scholar
  8. Bouzat JL, Johnson JA, Toepfer JE, Simpson SA, Esker TL, Westemeier RL (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201CrossRefGoogle Scholar
  9. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New YorkGoogle Scholar
  10. Fredrickson RJ, Siminski P, Woolf M, Hedrick PW (2007) Genetic rescue and inbreeding depression in Mexican wolves. Proc R Soc B 274:2365–2371PubMedPubMedCentralCrossRefGoogle Scholar
  11. Geffen E, Kam M, Hefner R, Hersteinsson P, Angerbjörn A, Dalèn L, Fuglei E, Norèn K, Adams JR, Vucetich J, Meier TJ, Mech LD, vonHoldt BM, Stahler DR, Wayne RK (2011) Kin encounter rate and inbreeding avoidance in canids. Mol Ecol 20:5348–5358PubMedCrossRefGoogle Scholar
  12. Hagenblad J, Olsson M, Parker HG, Ostrander EA, Ellegren H (2009) Population genomics of the inbred Scandinavian wolf. Mol Ecol 18:1341–1351PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hedrick PW (1994) Purging inbreeding depression. Heredity 73:363–372PubMedCrossRefGoogle Scholar
  14. Hedrick PW (2011) Genetics of populations, 4th edn. Jones and Bartlett, BostonGoogle Scholar
  15. Hedrick PW, Fredrickson R (2010) Guidelines for genetic rescue: examples from Mexican wolves and Florida panthers. Conserv Genet 11:615–626CrossRefGoogle Scholar
  16. Hedrick PW, Lacy RC (2014) Measuring relatedness between inbred individualsGoogle Scholar
  17. Hedrick PW, Adams JR, Vucetich JA (2011) Reevaluating and broadening the definition of genetic rescue. Conserv Biol 25:1069–1070PubMedCrossRefGoogle Scholar
  18. Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proc R Soc B 273:1491–1499PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hostetler JA, Onorato DP, Nichols JD, Johnson WE, Roelke ME, O’Brien SJ, Jansen D, Oki MK (2010) Genetic introgression and the survival of Florida panther kittens. Biol Conserv 143:2789–2796PubMedPubMedCentralCrossRefGoogle Scholar
  20. Jaquard A (1971) Genetic information given by a relative. Biometrics 28:1101–1114CrossRefGoogle Scholar
  21. Johnson WE, Onorato DP, Roelke ME, Land ED, Cunnningham M, Beldon RC, McBride R, Jansen D, Lotz M, Shindle D, Howard J, Wildt DE, Penfold LM, Hostetler JA, Oli MK, O’Brien SJ (2010) Genetic restoration of the Florida panther. Science 329:1641–1645PubMedCrossRefGoogle Scholar
  22. Liberg O, Andrén H, Pederson H-C, Sand H, Sejbeg D, Wabakken P, Åkesson M, Bensch S (2005) Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol Lett 1:17–20PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, SunderlandGoogle Scholar
  24. MacCluer JW, VandeBerg JL, Read B, Ryder OA (1986) Pedigree analysis by computer simulation. Zoo Biol 5:147–160CrossRefGoogle Scholar
  25. Madsen T, Ujvari B (2011) The potential demise of a population of adders (Vipera berus) in Smygehuk, Sweden. Herpetol Conserv Biol 6:72–74Google Scholar
  26. Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  27. Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biol Conserv 120:145–147CrossRefGoogle Scholar
  28. Marucco F, Vucetich LM, Peterson RO, Adams JR, Vucetich JA (2012) Evaluating the efficacy of non-invasive genetic methods and estimating wolf survival during a ten-year period. Conserv Genet 13:1611–1622CrossRefGoogle Scholar
  29. Mech LD (1966) The wolves of Isle Royale. US National Park Service Fauna Series No. 7 Government Printing Office, p 210Google Scholar
  30. Mech LD (1994) Regular and homeward travel speeds of Arctic wolves. J Mammal 75:741–742CrossRefGoogle Scholar
  31. Mech LD, Frenzel LD (Eds) (1971) Ecological studies of the timber wolf in northeastern Minnesota (vol 52). US North Central Forest Experiment StationGoogle Scholar
  32. Mech LD, Paul WJ (2008) Wolf body mass cline across Minnesota related to taxonomy? Canad J Zool 86:933–936CrossRefGoogle Scholar
  33. Miller JM, Poissant J, Hogg JT, Coltman DW (2012) Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis). Mol Ecol 21(1583):1596Google Scholar
  34. Peterson RO (1979) Social rejection following mating of a subordinate wolf. J Mammal 60:219–221CrossRefGoogle Scholar
  35. Peterson RO, Thomas NJ, Thurber JM, Vucetich JA, Waite TA (1998) Population limitation and the wolves of Isle Royale. J Mammal 79:828–841CrossRefGoogle Scholar
  36. Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496PubMedCrossRefGoogle Scholar
  37. Vilà C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfledt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc B 270:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  38. Vucetich JA, Peterson RO (2004) The influence of prey consumption and demographic stochasticity on population growth rate of Isle Royale wolves (Canis lupus). Oikos 107:309–320CrossRefGoogle Scholar
  39. Vucetich JA, Peterson RO (2014) The wolves of Isle Royale, 2013–2014, annual report. Michigan Technological Univ. p 16Google Scholar
  40. Vucetich JA, Nelson MP, Peterson RO (2012) Should Isle Royale wolves be reintroduced? A case study on wilderness management in a changing world. In: George Wright Forum (vol 29, No. 1, pp 126–147)Google Scholar
  41. Vucetich JA, Peterson RO, Nelson MP (2013a) Discernment and Precaution: A Response to Cochrane and Mech. In: George Wright Forum (vol 30, No. 3, pp 333–340)Google Scholar
  42. Vucetich JA, Peterson RO, Nelson MP (2013b) Response to Gostomski. In: George wright forum (vol 30, No. 1, pp 101–102)Google Scholar
  43. Westemeier RL, Brawn LD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698PubMedCrossRefGoogle Scholar
  44. Wolfe MW, Allen DL (1973) Continued studies of the status, socialization, and relationships of Isle Royale wolves, 1967–1970. J Mammal 54:611–635CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Philip W. Hedrick
    • 1
  • Rolf O. Peterson
    • 2
  • Leah M. Vucetich
    • 2
  • Jennifer R. Adams
    • 3
  • John A. Vucetich
    • 2
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  3. 3.Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowUSA

Personalised recommendations