Conservation Genetics

, Volume 15, Issue 3, pp 697–706 | Cite as

Gene flow and immigration: genetic diversity and population structure of lions (Panthera leo) in Hwange National Park, Zimbabwe

  • C. Morandin
  • A. J. Loveridge
  • G. Segelbacher
  • N. Elliot
  • H. Madzikanda
  • D. W. Macdonald
  • J. Höglund
Research Article

Abstract

The genetic diversity and population structure of a population of African lions in Hwange National Park, Zimbabwe, was studied using 17 microsatellite loci. Spatial genetic analysis using Bayesian methods suggested a weak genetic structure within the population and high levels of gene flow across the study area. We were able to identify a few individuals with aberrant or admixed ancestry, which we interpreted as either immigrants or as descendants thereof. This, together with relatively high genetic diversity, suggests that immigrants from beyond the study area have influenced the genetic structure within the park. We suggest that the levels of genetic diversity and the observed weak structure are indicative of the large and viable Okavango-Hwange population of which our study population is a part. Genetic patterns can also be attributed to still existing high levels of habitat connectivity between protected areas. Given expected increases in human populations and anthropogenic impacts, efforts to identify and maintain existing movement corridors between regional lion populations will be important in retaining the high genetic diversity status of this population. Our results show that understanding existing levels of genetic diversity and genetic connectivity has implications, not only for this lion population, but also for managing large wild populations of carnivores.

Keywords

Population genetic Lion (Panthera leoImmigration Gene flow 

Notes

Acknowledgments

Approval for the study was obtained from the Zimbabwe Parks and Management Wildlife Authority; the Wildlife drugs Subcommittee of the Drugs Control Council of Zimbabwe and the Zimbabwe Veterinary Association, Wildlife Group. The samples were sent to Uppsala University under a permit to import research material from Jordbruksverket (Sweden) and an export permit from National Parks in Zimbabwe. Field research was supported by the Eppley Foundation, Darwin Initiative for Biodiversity, Panthera Foundation, Rufford Maurice-Laing Foundation, Frankenberg Foundation, Mitsubishi Fund for Europe and Africa, the SATIB Trust and Robertson Foundation. DWM thanks the Recanati-Kaplan Foundation for support. We thank Mats Höggren at the Kolmården Zoo for providing us with samples from this zoo population and Maria Quintela for her valuable comments on our manuscript.

References

  1. Belkhir K, Borsa P, Chikhi L, et al. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000. Université de Montpellier II; Montpellier: 2004. GENETIX 4.05, logiciel sous Windows pour la génétique des populations. (http://www.univmontp2.fr/~genetix/genetix.htm)
  2. Bulgin NL, Gibbs HL, Vickery P, Baker AJ (2003) Ancestral polymorphisms in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida grasshopper sparrow (Ammodramus savannarum floridanus). Mol Ecol 12:831–844PubMedCrossRefGoogle Scholar
  3. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  4. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907PubMedCrossRefGoogle Scholar
  5. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268CrossRefGoogle Scholar
  6. Corander J, Sirén J, Arjas E (2008) Bayesian spatial modelling of genetic population structure. Comput Statistics 23:111–129CrossRefGoogle Scholar
  7. Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850PubMedCrossRefGoogle Scholar
  8. Coulon A, Guillot G, Cosson J et al (2006) Genetic structure is influenced by lansdcape features. Empirical evidence from a roe deer population. Mol Ecol 15:1669–1679PubMedCrossRefGoogle Scholar
  9. Dubach JM, Briggs MB, White PA, Ament BA, Patterson BD (2013) Genetic perspectives on ‘lion conservation units’ in Eastern and Southern Africa. Conserv Genet. doi: 10.1007/s10592-013-043-3 Google Scholar
  10. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  12. Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675CrossRefGoogle Scholar
  13. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Fraser DJ, Lipp C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol Ecol 13:67–80PubMedCrossRefGoogle Scholar
  15. Funston PJ, Micheal G, Mills L, Richardson PRK, Van Jaarsveld AS (2003) Reduced dispersal and opportunistic territory acquisition in male lions (Panthera leo). J Zool 259:131–142CrossRefGoogle Scholar
  16. Hanby JP, Bygott JD (1987) Emigration of subadult lions. Anim Behav 35:161–169CrossRefGoogle Scholar
  17. IUCN-SSC. (2006). Conservation strategy for the lion Panthera leo in eastern and southern Africa (pp. 55). www.felidae.org: IUCN SSC Cat Specialist Group
  18. Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA, Moore RD, Schley L (2005) Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol Ecol 14:3307–3315PubMedCrossRefGoogle Scholar
  19. Liberg O, Chapron G, Wabakken P, Pedersen HC, Hobb NT, Sand H (2011) Shoot, shovel and shut up: cryptic poaching slows restoration of a large carnivore in Europe. Proc Biol Sci 279(1730):910–915PubMedCentralPubMedCrossRefGoogle Scholar
  20. Loveridge AJ, Searle AW, Murindagomo F, Macdonald DW (2007) The impact of sport-hunting on the lion population in a protected area. Biol Conserv 134:548–558CrossRefGoogle Scholar
  21. Loveridge AJ, Wang SW, Frank LG, Seidensticker J (2010a) People and wild felids: conservation of cats and management of conflicts. In: Macdonald DW, Loveridge AJ (eds) Biology and Conservation of Wild Felids: 161. Oxford University Press, OxfordGoogle Scholar
  22. Loveridge AJ, Hemson G, Davidson Z, Macdonald DW (2010b) African lions on the edge: Reserve boundaries as ‘attractive sinks’. In: Macdonald DW, Loveridge AJ (eds) Biology and Conservation of Wild Felids: 283. Oxford University Press, OxfordGoogle Scholar
  23. Macdonald DW, Loveridge AJ, Rabinowitz A (2010) Felid futures: crossing disciplines, borders, and generations. In: Macdonald DW, Loveridge AJ (eds) Biology and Conservation of Wild Felids: 599. Oxford University Press, OxfordGoogle Scholar
  24. Madsen T, Olsson M, Shine R, Wittzell H (1999) Restoration of an inbred population of adder (Vipera berus). Nature 402:34–35CrossRefGoogle Scholar
  25. Menotti-Raymond M, David VA, Lyons LA, Schaffer AA, Tomlin JF, Hutton MK, O’Briend SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23PubMedCrossRefGoogle Scholar
  26. O’Brien SJ (1994) A role for molecular genetics in biological conservation. Proc Natl Acad Sci USA 91:5748–5755PubMedCentralPubMedCrossRefGoogle Scholar
  27. Packer C, Pusey AE (1993) Dispersal, kinship and inbreeding in African lions. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press, Chicago, pp 375–391Google Scholar
  28. Packer C, Brink H, Kissui BM, Maliti H, Kushnir H, Caro T (2010) Contributed paper: effects of trophy hunting on lion and leopard populations in Tanzania. Conserv Biol. doi: 10.1111/j.1523-1739.2010.01576 PubMedGoogle Scholar
  29. Packer C, Swanson A, Canney S, Loveridge A, Garnett S, Pfeifer M, Burton AC, Bauer H, MacNulty D (2013) The case for fencing remains intact. Ecol Lett. doi: 10.1111/ele.12171 Google Scholar
  30. Perrin N, Goudet J (2001) Inbreeding, kinship and the evolution of natal dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, p 452Google Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  32. Pritchard JK, Wen W (2003) Documentation for STRUCTURE software: Version 2. Available from http://www.pritch.bsd.uchicago.edu
  33. Pusey AE, Packer C (1987) The evolution of sex-biased dispersal in lions. Behaviour 101:275–310CrossRefGoogle Scholar
  34. Raymond M. & Rousset F, 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J Heredity, 86:248–249. (http://genepop.curtin.edu.au/)
  35. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  36. Riggio J, Jacobson A, Dollar L, Bauer H, Becker M, Dickman A, Funston P, Groom R, Henschel P, de Iong H, Lichtenfeld L, Pimm S (2013) The size of savannah Africa: a lion’s (Panthera leo) view. Biodiv Conser 22:17–35CrossRefGoogle Scholar
  37. Rogers CML (1993) A woody vegetation survey of Hwange National Park. Dept of National Parks and Wildlife Management, ZimbabweGoogle Scholar
  38. Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265–284PubMedCrossRefGoogle Scholar
  39. Spong G, Creel S (2001) Deriving dispersal distances from genetic data. Proc Biol Sci 268:2571–2574PubMedCentralPubMedCrossRefGoogle Scholar
  40. Spong G, Creel S, Stone J, Björklund M (2002) Genetic structure of lions (Panthera leo) in the Selous Game Reserve: implications for the evolution of sociality. J Evol Biol 15:945–953CrossRefGoogle Scholar
  41. Valeix M, Loveridge AJ, Chamaillé-Jammes S, Davidson Z, Murindagomo F, Fritz H, Macdonald DW (2009) Behavioural adjustments of African herbivores to predation risk by lions: Spatiotemporal variations influence habitat use. Ecology 90:23PubMedCrossRefGoogle Scholar
  42. Valeix M, Loveridge AJ, Davidson Z, Madzikanda H, Fritz H, Macdonald DW (2010) How key habitat features influence large terrestrial carnivore movements: waterholes and African lions in a semi arid savanna of north-western Zimbabwe. Landscape Ecol 25:337CrossRefGoogle Scholar
  43. Vilà C, Sundqvist AK, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc Biol Sci 1510:91–97CrossRefGoogle Scholar
  44. Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. Morandin
    • 1
    • 3
  • A. J. Loveridge
    • 2
  • G. Segelbacher
    • 5
  • N. Elliot
    • 2
  • H. Madzikanda
    • 4
  • D. W. Macdonald
    • 2
  • J. Höglund
    • 1
  1. 1.Population Biology and Conservation Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
  2. 2.Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan CentreOxford UniversityTubneyUK
  3. 3.Department of Biosciences, Centre of Excellence in Biological InteractionsHelsinki UniversityHelsinkiFinland
  4. 4.Zimbabwe Parks and Wildlife Management AuthorityHarareZimbabwe
  5. 5.Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany

Personalised recommendations