Still a one species genus? Strong genetic diversification in the world’s largest living odonate, the Neotropical damselfly Megaloprepus caerulatus

Abstract

Mesoamerican biodiversity is increasingly threatened by anthropogenic destruction of natural land cover. Habitat degradation and climate change are primary threats to specialized forest odonate species that are important model organisms for forest health and defining conservation units. The extreme niche specialization of Megaloprepus caerulatus, the world’s largest extant odonate, makes it well suited as an indicator for changing environmental conditions. Megaloprepus, which is considered to be a monospecific genus, is highly dependent on old growth forests whose water filled tree holes are limiting reproductive resources for this species. Here, we focus on the question how historical and recent fragmentation events, strong niche conservatism and ecological conditions have affected population dynamics, viability and the species status in this evolutionarily old genus. Two mitochondrial sequence markers (ND1 and 16S rRNA) and a set of microsatellites were used to analyze population structure and genetic diversity of M. caerulatus in the northern part of its distributional range. Results suggested an absence of gene flow and no shared haplotypes among the study populations. Statistical parsimony indicated high sub-structuring among populations with sequence diversity similar to levels found at the species level compared to other odonates. In sum, the genetic data suggest that Megaloprepus may actually consist of more than one species. The taxonomic status of the group should be revised in light of the three distinct genetic clusters found in different forest regions. The results may also allow insights into the impact of recent and historical habitat fragmentation on a strong Neotropical forest restricted insect species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abraham D, Ryrholm N, Wittzell H, Holloway JD, Scoble MJ, Löfstedt C (2001) Molecular phylogeny of the subfamilies in Geometridae (Geometroidea: Lepidoptera). Mol Phylogenet Evol 20:65–77

    CAS  PubMed  Article  Google Scholar 

  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Akademiai Kiado, Budapest

    Google Scholar 

  3. Balint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318

    Article  Google Scholar 

  4. Barrantes G (2009) The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and Western Panamá. Rev Biol Trop 57:333–349

    Google Scholar 

  5. Bisby F, Roskov Y, Culham A, Orrell T, Nicolson D, Paglinawan L, Bailly N, Kirk P, Bourgoin T, Baillargeon G, Hernandez F, De Wever A, Kunze T (2013) Species 2000 & ITIS Catalogue of Life. In: Species 2000, p. Digital resource at www.catalogueoflife.org/col/, Reading

  6. Brodie J, Post E, Laurance WF (2011) Climate change and tropical biodiversity: a new focus. Trends Ecol Evol (Personal edition) 27:145–150

    Article  Google Scholar 

  7. Brown KS (1997) Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring. J Insect Conserv 1:25–42

    Article  Google Scholar 

  8. Calderón R, Boucher T, Bryer M, Sotomayor L, Kappelle M (2004) Setting biodiversity conservation priorities in Central America: action site selection for the development of a first portfolio. The Nature Conservancy, Sna José

    Google Scholar 

  9. Carballa OL, Giere S, Cordero A, Hadrys H (2007) Isolation and characterization of microsatellite loci to study parthenogenesis in the citrine forktail, Ischnura hastata (Odonata: Coenagrionidae). Mol Ecol Notes 7:839–841

    CAS  Article  Google Scholar 

  10. Carrillo E, Saenz JC, Fuller TK (2002) Movements and activities of white-lipped peccaries in Corcovado National Park, Costa Rica. Biol Conserv 108:317–324

    Article  Google Scholar 

  11. Clausnitzer V, Lindeboom M (2002) Natural history and description of the dendrolimnetic larva of Coryphagrion grandis (Odonata). Int J Odonatol 5:29–44

    Article  Google Scholar 

  12. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660

    CAS  PubMed  Article  Google Scholar 

  13. Coen E (1983) Climate. In: Janzen DH (ed) Costa Rican natural history. The University of Chicago Press, Chicago, pp 35–46

    Google Scholar 

  14. Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, Essex

    Google Scholar 

  15. Cordero Rivera A (2006) Forests and Dragonflies. Fourth WDA International Symposium of Odonatology. Pensoft, Sofia

    Google Scholar 

  16. Córdoba-Aguilar A (2008) Dragonflies and damselflies. Model organism for ecological and evolutionary research. Oxford University Press, Oxford

    Google Scholar 

  17. Damm S, Hadrys H (2012) A dragonfly in the desert: genetic pathways of the widespread Trithemis arteriosa (Odonata: Libellulidae) suggest male-biased dispersal. Org Divers Evol 12:267–279

    Article  Google Scholar 

  18. Damm S, Dijkstra K-DB, Hadrys H (2010a) Red drifters and dark residents: the phylogeny and ecology of a Plio-Pleistocene dragonfly radiation reflects Africa′s changing environment (Odonata, Libellulidae, Trithemis). Mol Phylogenet Evol 54:870–882

    PubMed  Article  Google Scholar 

  19. Damm S, Schierwater B, Hadrys H (2010b) An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Mol Ecol 19:3881–3893

    PubMed  Article  Google Scholar 

  20. Davies DAL, Tobin P (1984) A synopsis of the dragonflies of the world: a systematic list of the extant species of Odonata. In: Societas Internationalis Odonatologia Rapid Communications (Supplements), vol 1, Zygoptera, Anisozygoptera. Utrecht

  21. DeClerck FAJ, Chazdon R, Holl KD, Milder JC, Finegan B, Martinez-Salinas A, Imbach P, Canet L, Ramos Z (2010) Biodiversity conservation in human-modified landscapes of Mesoamerica: past, present and future. Biol Conserv 143:2301–2313

    Article  Google Scholar 

  22. DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712

    CAS  PubMed  Article  Google Scholar 

  23. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Dirzo R, García MC (1992) Rates of deforestation in Los Tuxtlas a neotropical area in south east Mexico. Conserv Biol 6:84–90

    Article  Google Scholar 

  25. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. ESRI (2002) ArcView GIS 3.3. (ed. Environmental Systems Research Institute I, Redlands), California

  27. Estrada A (1982) Survey and census of howler monkeys (Alouatta palliata) in the rain forest of “Los Tuxtlas”, Veracruz, Mexico. Am J Primatol 2:363–372

    Article  Google Scholar 

  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Article  Google Scholar 

  30. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  32. Fincke OM (1992) Interspecific competition for tree holes: consequences for mating systems and coexistence in neotropical damselflies. Am Nat 139:80–101

    Article  Google Scholar 

  33. Fincke OM (1994) Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia 100:118–127

    Article  Google Scholar 

  34. Fincke OM (1998) The population ecology of Megaloprepus caerulatus and its effect on species assemblages in water-filled tree holes. Kluwer Academic, Dordrecht

    Google Scholar 

  35. Fincke OM (2006) Use of forest and tree species, and dispersal by giant damselflies (Pseudostigmatidae): their prospects in fragmented forests. In: Rivera AC (ed) Forest and dragonflies. 4th WDA International Symposium of Odonatology. Pensoft, Sofia, pp 103–125

    Google Scholar 

  36. Fincke OM, Hadrys H (2001) Unpredictable offspring survivorship in the Damselfly, Megaloprepus coerulatus, shapes parental behavior, constrains sexual selection, and challenges traditional fitness estimates. Evolution 55:762–772

    CAS  PubMed  Article  Google Scholar 

  37. Fincke OM, Hedström I (2008) Differences in forest use and colonization by Neotropical tree-hole damselflies (Odonata: Pseudostigmatidae): implications for forest conversion. Studies Neotrop Fauna Environ 43:35–45

    Article  Google Scholar 

  38. Garrison RW, von Ellenrieder N, Louton JA (2010) Damselfly genera of the new world: an illustrated and annotated key to the Zygoptera. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  39. Gienapp P, Teplitsky C, Alho JS, Mills JA, MerilÄ J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    CAS  PubMed  Article  Google Scholar 

  40. Giere S, Hadrys H (2006) Polymorphic microsatellite loci to study population dynamics in a dragonfly, the libellulid Trithemis arteriosa (Burmeister 1839). Mol Ecol Notes 6:933–935

    CAS  Article  Google Scholar 

  41. Groeneveld LF, Clausnitzer V, Hadrys H (2007) Gigantism in damselflies of Africa and South America: convergent evolution or homologous structures? Evidence from nuclear and mitochondrial sequence data. Mol Phylogenet Evol 42:339–346

    CAS  PubMed  Article  Google Scholar 

  42. Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, vol 4. Wiley-Blackwell, New York

    Google Scholar 

  43. Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63

    CAS  PubMed  Article  Google Scholar 

  44. Hadrys H, Schroth W, Schierwater B, Streit B, Fincke O (2005) Tree hole odonates as environmental monitors: non-invasive isolation of polymorphic microsatellites from the neotropical damselfly Megaloprepus caerulatus. Conserv Genet 6:481–483

    Article  Google Scholar 

  45. Hadrys H, Clausnitzer V, Groeneveld LF (2006) The present role and future promise of conservation genetics for forest Odonates. In: Rivera AC (ed) Forest and dragonflies. 4th WDA International Symposium of Odonatology. Pensoft, Sofia, pp 279–299

    Google Scholar 

  46. Hadrys H, Timm J, Streit B, Giere S (2007a) A panel of microsatellite markers to study sperm precedence patterns in the emperor dragonfly Anax imperator (Odonata: Anisoptera). Mol Ecol Notes 7:296–298

    CAS  Article  Google Scholar 

  47. Hadrys H, Wargel A, Giere S, Kraus B, Streit B (2007b) A panel of microsatellite markers to detect and monitor demographic bottlenecks in the riverine dragonfly Orthetrum coerulescens F. Mol Ecol Notes 7:287–289

    CAS  Article  Google Scholar 

  48. Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, MartÍNez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican Hotspot. Conserv Biol 22:8–15

    PubMed  Article  Google Scholar 

  49. Hassall C, Thompson DJ (2008) The impact of environmental warming on Odonata—a review. Int J Odonatol 11:131–153

    Article  Google Scholar 

  50. Hayes L, Mann DJ, Monastyrskii AL, Lewis OT (2009) Rapid assessments of tropical dung beetle and butterfly assemblages: contrasting trends along a forest disturbance gradient. Insect Conserv Divers 2:194–203

    Article  Google Scholar 

  51. Heckman CW (2008) Encyclopedia of South American aquatic insects: Odonata—Zygoptera. Springer, Leiden

    Google Scholar 

  52. Hedström I, Sahlén G (2001) A key to the adult Costa Rican helicopter damselflies Odonata: Pseudostigmatidae with notes on their phenology and life zone preferences. Revista de Biología Tropical 49:1037–1056

    PubMed  Google Scholar 

  53. Hedström I, Sahlén G (2003) An extended description of the larva of Megaloprepus caerulatus from Costa Rica (Odonata: Pseudostigmatidae). Int J Odonatol 6:23–31

    Article  Google Scholar 

  54. Holt RD, Gomulkiewicz R (2004) Conservation implications of niche conservatism and evolution in heterogeneous environments. In: Ferriere R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, pp 244–264

    Google Scholar 

  55. Ingley SJ, Bybee SM, Tennessen KJ, Whiting MF, Branham MA (2012) Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae). Zoologica Scripta 41:637–650

    Article  Google Scholar 

  56. Kalkman VJ, Clausnitzer V, Dijkstra K-D, Orr A, Paulson D, Tol J (2008) Global diversity of dragonflies (Odonata) in freshwater. In: Freshwater animal diversity assessment, vol 595. Springer Netherlands, pp 351–363

  57. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Article  Google Scholar 

  58. Kozak KH, Wiens JJ (2010) Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol Lett 13:1378–1389

    PubMed  Article  Google Scholar 

  59. Laurance WF, Carolina Useche D, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benitez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294

    CAS  PubMed  Article  Google Scholar 

  60. Leigh EG (1999) Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, New York

    Google Scholar 

  61. Lewis OT, Basset Y (2007) Insect conservation in tropical forests. In: Stewart A, New T, Lewis O (eds) Insect conservation biology. The Royal Entomological Society, London, pp 34–56

    Google Scholar 

  62. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Article  Google Scholar 

  63. Magurran AE, Dornelas M (2010) Biological diversity in a changing world. Philos Trans R Soc B 365:3593–3597

    Article  Google Scholar 

  64. Mayhew PJ, Jenkins GB, Benton TG (2008) A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc R Soc B 275:47–53

    PubMed Central  PubMed  Article  Google Scholar 

  65. McDade LA, Hartshorn GS (1994) La Selva Biological Station. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago, pp 6–18

    Google Scholar 

  66. Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Revista Chilena de Historia Natural 78:451–467

    Article  Google Scholar 

  67. Miller K, Chang E, Johnson N (2001) Defining common ground for the Mesoamerican Biological Corridor. World Resources Institute, Washington, D.C.

    Google Scholar 

  68. Müller J, Müller K (2003) QuickAlign: a new alignment editor. Plant Mol Biol Rep 21:5

    Article  Google Scholar 

  69. Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock S, Mooney H, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34

    Google Scholar 

  70. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Article  Google Scholar 

  71. Orr AG (2006) Odonata in Bornean tropical rain forest formations: diversity, endemicity and implications for conservation management. In: Cordero-Rivera A (ed) Forests and dragonflies. Sofia, Pensoft, pp 51–78

    Google Scholar 

  72. Pannebakker BA, Niehuis O, Hedley A, Gadau J, Shuker DM (2010) The distribution of microsatellites in the Nasonia parasitoid wasp genome. Insect Mol Biol 19:91–98

    CAS  PubMed  Article  Google Scholar 

  73. Paulson D (2006) The importance of forests to Neotropical Dragonflies. In: Rivera AC (ed) Forests and Dragonflies. Fourth WDA International Symposium of Odonatology. Pensoft, Sofia, pp 79–101

    Google Scholar 

  74. Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163

    Article  Google Scholar 

  75. Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    CAS  PubMed  Article  Google Scholar 

  76. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    CAS  PubMed  Article  Google Scholar 

  77. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Article  Google Scholar 

  78. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Rich PV, Rich TH (1983) The Central American dispersal route: biotic history and palaeogeography. In: Janzen DH (ed) Costa Rican natural history. The University of Chicago Press, Chicago, pp 12–34

    Google Scholar 

  80. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Article  Google Scholar 

  81. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Article  Google Scholar 

  82. Rutkowski R, Szczuka A, Zalewsk M, Korczyńska J, Gryziak G (2011) Failure of microsatellite’s cross-species amplification in common ground beetle Pterostichus melanarius (Illiger). Baltic J Coleopterol 11:17–24

    Google Scholar 

  83. Schultz TD, Fincke OM (2009) Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly. Funct Ecol 23:724–732

    Article  Google Scholar 

  84. Schulze CH, Waltert M, Kessler PJA, Pitopang R, Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14:1321–1333

    Article  Google Scholar 

  85. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Floors P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  86. Solórzano García B, Ellis EA, Rodríguez-Luna E (2012) Deforestation and primate habitat availability in Los Tuxtlas biosphere reserve, Mexico. Int J Ecosyst 2:61–66

    Article  Google Scholar 

  87. Stehli FG, Webb SD (1985) The great American biotic interchange. Plenum Press, New York

    Google Scholar 

  88. Steinmann H (1997) World catalogue of Odonata: Zygoptera. Walter de Gruyter

  89. Sutherland WJ, Adams WM, Aronson RB, Aveling R, Blackburn TM, Broad S, Ceballos G, CÔTÉ IM, Cowling RM, Da Fonseca GAB, Dinerstein E, Ferraro PJ, Fleishman E, Gascon C, Hunter Jr M, Hutton J, Kareiva P, Kuria A, Macdonald DW, Mackinnon K, Madgwick FJ, Mascia MB, McNeely J, Milner-Gulland EJ, Moon S, Morley CG, Nelson S, Osborn D, Pai M, Parsons ECM, Peck LS, Possingham H, Prior SV, Pullin AS, Rands MRW, Ranganathan J, Redford KH, Rodriguez JP, Seymour F, Sobel J, Sodhi NS, Stott A, Vance-Borland K, Watkinson AR (2009) One hundred questions of importance to the conservation of global biological diversity cien preguntas de importancia para la conservación de la diversidad biológica global. Conserv Biol 23:557–567

    Google Scholar 

  90. Swofford DL (2002) PAUP* phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  91. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  92. Urbina-Cardona JN, Olivares-Pérez M, Reynoso VH (2006) Herpetofauna diversity and microenvironment correlates across a pasture–edge–interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol Conserv 132:61–75

    Article  Google Scholar 

  93. Watts PC, Rouquette JR, Saccheri IJ, Kemp SJ, Thompson DJ (2004) Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Mol Ecol 13:2931–2945

    CAS  PubMed  Article  Google Scholar 

  94. Watts PC, Rousset F, Saccheri IJ, Leblois R, Kemp SJ, Thompson DJ (2007) Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Mol Ecol 16:737–751

    PubMed  Article  Google Scholar 

  95. Wiens JJ, Graham CH (2005) NICHE CONSERVATISM: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  96. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    PubMed  Article  Google Scholar 

  97. Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301

    Article  Google Scholar 

  98. Yanoviak SP (1999) Community structure in water-filled tree holes of Panama: effects of hole height and size. Selbyana 20:106–115

    Google Scholar 

Download references

Acknowledgments

We appreciate support received from the following Biological Stations and National Parks: the Smithsonian Tropical Research Institue—Barro Colorado Island, the Área de Conservación Osa (ACOSA)—Corcovado National Park, the Organization for Tropical Studies—Biological Station La Selva, and the Instituto de Biología, Universidad Nacional Autónoma de México (UNAM)—Los Tuxtlas Tropical Biology Station; their administrative directors and scientists: Wendy A. Barrantes R., Rosamond I. Coates, Enrique González Soriano, and Oris Acevedo. Furthermore, we would like to thank the Autoridad Nacional del Ambiente (ANAM), the Ministerio de Ambiente, Energía y Telecomunicaciones (MINAET), and the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) for permission to collect and do research. We are grateful to Bernd Schierwater, Sandra Damm, Annika Schlötelburg, and Rosamond I. Coates for helpful comments. This work was supported by a German Science Foundation (DFG) grant HA 1947/6-1 given to HH, travel grants from the German Academic Exchange Service (DAAD) and the Graduate Academy from the Leibniz University Hannover to WF, and by NSF grant IOS-0641679 to OMF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wiebke Feindt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feindt, W., Fincke, O. & Hadrys, H. Still a one species genus? Strong genetic diversification in the world’s largest living odonate, the Neotropical damselfly Megaloprepus caerulatus . Conserv Genet 15, 469–481 (2014). https://doi.org/10.1007/s10592-013-0554-z

Download citation

Keywords

  • Conservation genetics
  • Speciation
  • Neotropical primary forests
  • Odonata