Conservation Genetics

, Volume 15, Issue 1, pp 123–136 | Cite as

Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada

  • Jody M. Tucker
  • Michael K. Schwartz
  • Richard L. Truex
  • Samantha M. Wisely
  • Fred W. Allendorf
Research Article

Abstract

The small population of fisher (Pekania pennanti) in the southern Sierra Nevada is completely geographically and genetically isolated putting it at increased risk of extinction. Previous research using a clustered sampling scheme found a high amount of genetic subdivision within the southern Sierra Nevada population hypothesized to be caused by the Kings River Canyon. In this study, we use a larger and more geographically continuous set of genetic samples (n = 127) than was previously available to test this hypothesis and evaluate the genetic structure of the population. Both spatial and non-spatial population assignment models found three primary genetic clusters with moderate divergence between the clusters (FST = 0.05–0.13) at 10 microsatellite loci. These clusters appear to be associated with areas around the Kings River and Mountain Home State Demonstration Forest. One model also detected additional fine scale subdivision north of the Kings River that may be evidence of founder effects from a recent population expansion. The amount of population subdivision detected in this study is lower than previously found and indicates that while certain landscape features may reduce gene flow, these landscape features may be less of a barrier than initially thought. In the previous work, samples were collected in clusters which can inflate estimates of population structure by increasing the likelihood of oversampling related individuals. This study demonstrates how clustered sampling from a continuously distributed population can affect the assessment of population subdivision and influence conservation implications.

Keywords

Fisher Pekania pennanti Isolation by distance Population subdivision Sampling 

Supplementary material

10592_2013_525_MOESM1_ESM.pdf (7 kb)
Supplementary material 1 (PDF 6 kb)

References

  1. Archie JW (1985) Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39:623–637CrossRefGoogle Scholar
  2. Aubry KB, Raley CM (2006) Ecological characteristics of fishers (Martes pennanti) in the southern Oregon Cascade Range. USDA Forest Service Report, Pacific Northwest Research Station, OlympiaGoogle Scholar
  3. Aubry KB, Wisely SM, Raley C, Buskirk SW (2004) Zoogeography, spacing patterns, and dispersal in fishers: insights gained from combining field and genetic data. In: Harrison D, Fuller AK, Proulx G (eds) Martens and fishers (Martes) in human-altered environments: an international perspective, 1st edn. Springer, New York, pp 201–220Google Scholar
  4. Berger J, Young JK, Berger KM (2008) Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol 6:165. doi:10.1371/journal.pbio.0060165 CrossRefGoogle Scholar
  5. Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516PubMedCrossRefGoogle Scholar
  6. Broquet T, Johnson C, Petit E, Thompson I, Burel F, Fryxell J (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15:1689–1697PubMedCrossRefGoogle Scholar
  7. Carr D, Bowman J, Kyle CJ, Tully SM, Koen EL, Robitaille JF, Wilson PJ (2007) Rapid homogenization of multiple sources: genetic structure of a recolonizing population of fishers. J Wild Manag 71:1853–1861CrossRefGoogle Scholar
  8. Center for Biological Diversity (2008) A petition to list the Pacific fisher (Martes pennanti) as an Endangered or Threatened species under the California Endangered Species Act. On file at the California Department of Fish and GameGoogle Scholar
  9. Cooper G, Rubinsztein DC, Amos W (1998) Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet 7:1425–1429PubMedCrossRefGoogle Scholar
  10. Copeland JP (1996) Biology of the wolverine in central Idaho. M.S. Thesis. University of IdahoGoogle Scholar
  11. Dallas J, Piertney S (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1248–1251PubMedGoogle Scholar
  12. Davis CS, Strobeck C (1998) Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7:1776–1778PubMedGoogle Scholar
  13. Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569CrossRefGoogle Scholar
  14. Duffy AJ, Landa A, O’Connell M, Stratton C, Wright JM (1998) Four polymorphic microsatellite in wolverine, Gulo gulo. Anim Genet 29:63–72PubMedCrossRefGoogle Scholar
  15. Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402PubMedCrossRefGoogle Scholar
  16. Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite evolution: directionality or bias? Nat Genet 11:360–361PubMedCrossRefGoogle Scholar
  17. Epps CW, Palsboll P, Wehausen JD, Roderick GK, Mccullough DR (2006) Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol Ecol 15:4295–4302PubMedCrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  20. Frantz A, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  21. Gardner CL, Ballard WB, Jessup RH (1986) Long distance movement by an adult wolverine. J Mamm 67:603CrossRefGoogle Scholar
  22. Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630PubMedCentralGoogle Scholar
  23. Gilpin ME, Soule ME (1986) Minimum viable populations: processes of species extinction. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 18–34Google Scholar
  24. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486247Google Scholar
  25. Goudet J (2001) FSTAT, a program to estimate and test gene diversitiesand fixation indices version 2.9.3. www.unil.ch/izea/softwares/fstat.html. Accessed 16 Sept 2010
  26. Greer AL, Collins JP (2008) Habitat fragmentation as a result of biotic and abiotic factors controls pathogen transmission throughout a host population. J Anim Ecol 77:364–369PubMedCrossRefGoogle Scholar
  27. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  28. Hapeman P, Latch EK, Fike JA, Rhodes OE, Kilpatrick CW (2011) Landscape genetics of fishers (Martes pennanti) in the Northeast: dispersal barriers and historical influences. J Hered 102:251–259PubMedCrossRefGoogle Scholar
  29. Hawley DM, Hanley D, Dhondt AA, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Ecol 15:263–275PubMedCrossRefGoogle Scholar
  30. Hedmark E, Flagstad Ø, Segerstroem P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410CrossRefGoogle Scholar
  31. Hedrick PW (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318CrossRefGoogle Scholar
  32. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638PubMedGoogle Scholar
  33. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCentralPubMedCrossRefGoogle Scholar
  34. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914CrossRefGoogle Scholar
  35. Jordan MJ, Higley JM, Mattews SM, Rhodes OE, Schwartz MK, Barrett RH, Palsbøll PJ (2007) Development of 22 new microsatellite loci for fishers (Martes pennanti) with variability results from across their range. Mol Ecol Notes 7:797–801CrossRefGoogle Scholar
  36. Kalinowski S (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36PubMedCrossRefGoogle Scholar
  37. Knaus BJ, Cronn R, Pilgrim K, Schwartz MK (2011) Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecol 11:10PubMedCentralPubMedCrossRefGoogle Scholar
  38. Koepfli K, Deere K, Slater G (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kojola I, Kaartinen S, Hakala A, Heikkinen S, Voipo H (2009) Dispersal behavior and the connectivity between wolf populations in northern Europe. J Wildl Manag 73:309–313CrossRefGoogle Scholar
  40. Kyle CJ, Strobeck C (2001) Genetic structure of North American wolverine (Gulo gulo) populations. Mol Ecol 10:337–347Google Scholar
  41. Kyle C, Strobeck C (2003) Genetic homogeneity of Canadian mainland marten populations underscores the distinctiveness of Newfoundland pine martens (Martes americana atrata). Can J Zool 81:57–66CrossRefGoogle Scholar
  42. Kyle C, Davis C, Strobeck C (2000) Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and Northwest Territories. Can J Zool 78:1150–1157Google Scholar
  43. Kyle CJ, Robitaille JF, Strobeck C (2001) Genetic variation and structure of fisher (Martes pennanti) populations across North America. Mol Ecol 10:2341–2347Google Scholar
  44. Kyle CJ, Strobeck C, Bradley RD (2002) Connectivity of peripheral and core populations of North American wolverines. J Mamm 83:1141–1150CrossRefGoogle Scholar
  45. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191CrossRefGoogle Scholar
  46. Lecis R, Pierpaoli M, Biro Z, Szemethy L, Ragni B, Vercillo F, Randi E (2006) Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol Ecol 15:119–131PubMedCrossRefGoogle Scholar
  47. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  48. Matthews SM, Higley JM, Rennie KM, Green RE, Goddard CA, Wengert GM, Gabriel MW, Fuller TK (2013) Reproduction, recruitment, and dispersal of fishers (Martes pennanti) in a managed Douglas-fir forest in California. J Mamm 94:100–108CrossRefGoogle Scholar
  49. McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68:439–448CrossRefGoogle Scholar
  50. McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5:716–718CrossRefGoogle Scholar
  51. Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846PubMedCrossRefGoogle Scholar
  52. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323PubMedCrossRefGoogle Scholar
  53. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  54. Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495PubMedCrossRefGoogle Scholar
  55. Peakall R, Smouse PE (2005) Appendix 2-spatial autocorrelation in GenAlEx 6. http://biology.anu.edu.au/GenAlEx/Download.html
  56. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  57. Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, Eby P, Daszak P (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes. Proc R Soc B 278:3703–3712PubMedCrossRefGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  59. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248Google Scholar
  60. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  61. Roesch FA, Reams GA (1999) Analytical alternatives for an annual inventory system. J For 97:33–37Google Scholar
  62. Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW (2005) Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet 1:660–671CrossRefGoogle Scholar
  63. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  64. Safner T, Miller MP, McRae BH, Fortin MJ, Manel S (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Intern J Mol Sci 12:865–889CrossRefGoogle Scholar
  65. Sato JJ, Wolsan M, Prevosti FJ, D’Elía G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757PubMedCrossRefGoogle Scholar
  66. Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452CrossRefGoogle Scholar
  67. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  68. Spencer W, Rustigian-Romsos H, Strittholt J, Scheller R, Zielinski W, Truex R (2011) Using occupancy and population models to assess habitat conservation opportunities for an isolated carnivore population. Biol Conserv 144:788–803CrossRefGoogle Scholar
  69. Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55CrossRefGoogle Scholar
  70. Tucker JM, Schwartz MK, Truex RL, Pilgrim KL, Allendorf FW (2012) Historical and contemporary DNA indicate fisher decline and isolation occurred prior to the European settlement of California. PLoS ONE 7:e52803. doi:10.1371/journal.pone.0052803 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Vähä J, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72PubMedCrossRefGoogle Scholar
  72. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  73. Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106CrossRefGoogle Scholar
  74. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  76. Weir RW, Corbould FB (2008) Ecology of fishers in the sub-boreal forests of north-central British Columbia, Final Report. Peace/Williston Fish and Wildlife Compensation Program Report No. 315, Prince George, British Columbia, CanadaGoogle Scholar
  77. Wilcove DS, Wikelski M (2008) Going, going, gone: is animal migration disappearing. PLoS Biol 6:e188. doi:10.1371/journal.pbio.0060188 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Willson MF (2004) Loss of habitat connectivity hinders pair formation and juvenile dispersal of chucao tapaculos in Chilean rainforest. Condor 106:166–171CrossRefGoogle Scholar
  79. Wisely SM, Buskirk SW, Russell GA, Aubry KB, Zielinski WJ (2004) Genetic diversity and structure of the fisher (Martes pennanti) in a peninsular and peripheral metapopulation. J Mamm 85:640–648CrossRefGoogle Scholar
  80. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar
  81. Yang BZ, Zhao H, Kranzler HR, Gelernter J (2005) Practical population group assignment with selected informative markers: characteristics and properties of Bayesian clustering via STRUCTURE. Genet Epidemiol 28:302–312PubMedCrossRefGoogle Scholar
  82. York EC (1996) Fisher population dynamics in north-central Massachusetts. M.S. Thesis, University of Massachusetts, AmherstGoogle Scholar
  83. Zielinski WJ, Mori S (2001) What is the status and change in the geographic distribution and relative abundance of fishers? Adaptive management strategy, Sierra Nevada framework, study plan. USDA Forest Service, Pacific Southwest Research Station, ArcataGoogle Scholar
  84. Zielinski WJ, Truex RL (1995) Distinguishing tracks of marten and fisher at track-plate stations. J Wildl Manag 59:571–579CrossRefGoogle Scholar
  85. Zielinski WJ, Kucera TE, Barrett RH (1995) Current Distribution of fishers (Martes pennanti) in California. Calif Fish Game 81:104–112Google Scholar
  86. Zielinski WJ, Truex RL, Schmidt GA, Schlexer FV, Schmidt KN, Barrett RH (2004) Home range characteristics of fisher in California. J Mamm 85:649–657CrossRefGoogle Scholar
  87. Zielinski WJ, Truex RL, Schlexer FV, Campbell LA, Carroll C (2005) Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA. J Biogeogr 32:1385–1407CrossRefGoogle Scholar
  88. Zielinski WJ, Schlexer FRV, Pilgrim KL, Schwartz MK (2006) The efficacy of wire and glue hair snares in identifying mesocarnivores. Wildl Soc Bull 34:1152–1161CrossRefGoogle Scholar
  89. Zielinski WJ, Baldwin JA, Truex RL, Tucker JM, Flebbe PA (2012) Estimating trend in occupancy for the southern Sierra fisher (Martes pennanti) population. J Fish Wild Manag. doi:10.3996/012012-JFWM-002 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • Jody M. Tucker
    • 1
    • 2
    • 3
  • Michael K. Schwartz
    • 3
  • Richard L. Truex
    • 4
  • Samantha M. Wisely
    • 5
  • Fred W. Allendorf
    • 6
  1. 1.Sequoia National ForestPortervilleUSA
  2. 2.Wildlife Biology ProgramUniversity of MontanaMissoulaUSA
  3. 3.Rocky Mountain Research StationUSDA Forest ServiceMissoulaUSA
  4. 4.USDA Forest ServiceGoldenUSA
  5. 5.Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleUSA
  6. 6.Division of Biological SciencesUniversity of MontanaMissoulaUSA

Personalised recommendations