Skip to main content

Advertisement

Log in

Limited effects of suburbanization on the genetic structure of an abundant vernal pool-breeding amphibian

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation and degradation associated with suburbanization can have negative consequences on population persistence through the reduction of dispersal and concomitant gene flow. Using eight polymorphic microsatellite loci, we assessed the effects of forest fragmentation, water quality and hydroperiod on the genetic structure of a vernal pool-breeding amphibian, the wood frog (Lithobates sylvaticus), across 20 ponds in an unfragmented, forested landscape and 45 ponds in a landscape fragmented by moderate suburban development. Analyses were performed at the broad scale of the study area and at a fine scale, with spatially independent clusters of ponds selected within each landscape. Bayesian clustering approaches and AMOVA identified little population structure at the scale of the study area. At the fine scale, genetic structure was correlated with geographic distance and the presence of roads in two of the three fragmented clusters. Spatial autocorrelation analyses detected positive spatial genetic structure and restricted dispersal in one of the clusters in the fragmented landscape. We identified barriers associated with roads and suburban development in the fragmented landscape and with large bodies of water and elevation in the unfragmented landscape. Lastly, we found no biologically meaningful effects of water quality or hydroperiod on genetic variation. The results of this study indicate that wood frog populations are well connected, with high gene flow, across the landscape of southeastern New Hampshire, and that fragmenting features of suburbanization to date have a small but detectable impact on fine-scale genetic structure. The potential exists for greater impacts with higher levels of development or longer time scales. Our findings also highlight the importance of replication in landscape genetic studies, as the genetic response we detected varied with a gradient of fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modeling as a functional landscape model. Landscape Urban Plan 64:233–247

    Google Scholar 

  • Alcaide M, Serrano D, Negro JJ, Tella JL, Laaksonen T, Müller C, Gal A, Korpimäki A (2009) Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: a comparison with the widespread and sympatric Eurasian Kestrel. Heredity 102:190–198

    Google Scholar 

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Anderson CD, Epperson BK, Fortin M-J, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Babbitt KJ, Baber MJ, Tarr TL (2003) Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool 81:1539–1552

    Article  Google Scholar 

  • Babbitt KJ, Baber MJ, Brandt LA (2006) The effects of woodland proximity and wetland characteristics on wetland larval anuran assemblages. Can J Zool 84:510–519

    Article  Google Scholar 

  • Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164

    Article  PubMed  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH et al (2009a) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24:455–463

    Article  Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ (2009b) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830

    Article  Google Scholar 

  • Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Ranasylvatica): implications for genetic populationstructure. Evolution 44:2047–2056

    Article  Google Scholar 

  • Brede EG, Beebee TJC (2004) Contrasting population structures in two sympatric anurans: implications for species conservation. Heredity 92:111–117

    Article  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol S40:193–216

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Cavalli-Sforza, L.L. and Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Google Scholar 

  • Clark RW, Brown WS, Stechert R, Zamudio KR (2010) Roads, interrupted dispersal, and genetic diversity in timber rattle snake. Conserv Biol 4:1059–1069

    Google Scholar 

  • Collins SJ, Russell RW (2009) Toxicity of road salt to Nova Scotia amphibians. Environ Pollut 157:320–324

    Article  PubMed  CAS  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Google Scholar 

  • Crosby MKA, Licht LE, Fu J (2009) The effect of habitat fragmentation on fine scale population structure of wood frogs (Ranasylvatica). Conserv Genet 10:1707–1718

    Article  Google Scholar 

  • Crouch WB, Paton PWC (2000) Using egg-mass counts to monitor wood frog populations. Wildlife Soc B 28:895–901

    Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:31–240

    Google Scholar 

  • De-Lucas AI, González-Martínez SC, Vendramin GG, Hidalgo E, Heuertz M (2009) Spatial genetic structure in continuous and fragmented populations of Pinuspinaster Aiton. Mol Ecol 18:4564–4576

    Article  PubMed  CAS  Google Scholar 

  • Dodd CK, Barichivich WJ, Smith LL (2004) Effectiveness of a barrier wall and culverts in reducing wildlife mortality on a heavily traveled highway in Florida. Biol Conserv 83:43–54

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Google Scholar 

  • Foll M, Gaggiotti O (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf SW (2005) Population structure of Columbia spotted frogs (Ranaluteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Google Scholar 

  • Gaggiotti OE, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Resour 10:821–830

    Google Scholar 

  • Gallant AL, Klaver RW, Casper GS, Lannoo MJ (2007) Global rates of habitat loss and implications for amphibian conservation. Copeia 2007:967–979

    Article  Google Scholar 

  • Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoama macrodactylum). Mol Ecol 16:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guerry AD, Hunter ML (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conserv Biol 16:745–754

    Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego

    Google Scholar 

  • Hardy OJ, Vekemans S (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou L, Breyne E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  PubMed  CAS  Google Scholar 

  • Herrmann HL, Babbitt KJ, Baber MJ, Congalton RJ (2005) Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape. Biol Conserv 123:139–149

    Article  Google Scholar 

  • Hitchings SP, Beebee TJC (1997) Genetic substructuring as a result of barriers to gene flow in urban Ranatemporaria (common frog) populations: implications for biodiversity conservation. Heredity 79:117–127

    Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metriopteraroeseli. Landscape Ecol 21:891–899

    Article  Google Scholar 

  • Horne MT, Dunson WA (1994) Interactive effects of low pH, toxic metals, and DOC on a simulated temporary pond community. Environ Pollut 89:155–161

    Article  Google Scholar 

  • Horne MT, Dunson WA (1995) Effects of low pH, metals, and water hardness on larval amphibians. Arch Environ Contam Toxicol 29:500–505

    CAS  Google Scholar 

  • Howard RD, Kluge AG (1985) Proximate mechanisms of sexual selection in wood Frogs. Evolution 39:260–277

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol 9:1322–1332

    Google Scholar 

  • Hunt A, Dickens HJ, Whelan RJ (1987) Movement of mammals through tunnels under railway lines. Aust J Zool 24:89–93

    Google Scholar 

  • Jackson SD, Griffin CR (2000) A strategy for mitigating highway impacts on wildlife. In: Messmer TA, West B (eds) Wildlife and highways: seeking solutions to an ecological and socio-economic dilemma. The Wildlife Society, Bethesda, pp 143–159

    Google Scholar 

  • Julian SE, King TL (2003) Novel tetranucleotide microsatellite DNA markers for the wood frog, Ranasylvatica. Mol Ecol Notes 3:256–258

    Article  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  PubMed  CAS  Google Scholar 

  • Karraker NE, Gibbs JP, Vonesh JR (2008) Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol Appl 18:724–734

    Google Scholar 

  • Keller I, Nentwig W, Largiader CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994

    Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc B Biol Sci 272:553–560

    Google Scholar 

  • Lada, H, Thomson JR, Mac Nally R, Taylor AC (2008) Impacts of massive landscape change on a carnivorous marsupial in south-eastern Australia: inferences from landscape genetics analysis. J Appl Ecol 45:1732–1741

    Google Scholar 

  • Lampert KP, Rand AS, Mueller UG, Ryan MJ (2003) Fine-scale genetic pattern and evidence for sex-biased dispersal in the tungara frog, Physalaemuspustulosus. Mol Ecol 12:3325–3334

    Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikarts G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Google Scholar 

  • Lesbarres RES, Lode DT, Merila J (2004) What type of underpass could potentially reduce amphibian road kills. Oryx 38:1–5

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic Data Analysis: computer program for the analysis of allelic data, Version 1.0 (d16c). Available from http://lewis.eeb.uconn.edu/lewishome/software.html

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Google Scholar 

  • Morin PA, Manaster C, Mesnick SL, Holland R (2009) Normalization and binning of historical and multi-source microsatellite data: overcoming the problems of allele size shift with ALLELOGRAM. Mol Ecol Resour 9:1451–1455

    Google Scholar 

  • Murphy M, Evans J, Cushman S, Storfer A (2008) Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697

    Article  Google Scholar 

  • Murphy M, Evans J, Storfer A (2010a) Quantify ecological process at multiple spatial scales using landscape genetics: Bufoboreas connectivity in Yellowstone National Park. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Murphy M, Dezzani R, Pilliod D, Storfer A (2010b) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    Google Scholar 

  • Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Ranasylvatica). Mol Ecol 10:1087–1100

    Article  PubMed  CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB (2006) VEGAN: community ecology package, R package ver. 1.8–3. Available from http://cran.r-project.org/

  • Pannell JR, Charlesworth B (1999) Neutral genetic diversity in a metapopulation with recurrent local extinction and recolonization. Evolution 53:664–676

    Article  Google Scholar 

  • Patrick DA, Schalk CM, Gibbs JP, Woltz HW (2010) Effective culvert placement and design to facilitate passage of amphibians across roads. J Herpetol 44:618–626

    Google Scholar 

  • Peakall R, Smouse PE (1995) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat Rattusfuscipes. Evolution 57:1182–1195

    PubMed  Google Scholar 

  • Pechmann JHK, Scott DE, Gibbons JW, Semlitsch RD. 1989. Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians. Wetl Ecol Manag 1:3–11

    Google Scholar 

  • Pough FH, Wilson RE (1977) Acid precipitation and reproductive success of Ambystoma salamanders. Water Air Soil Poll 7:531–544

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Richter KO, Azous AL (1995) Amphibian occurrence and wetland characteristics in the Puget Sound Basin. Wetlands 15:306–312

    Article  Google Scholar 

  • Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Rothermal BB (2004) Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecol Appl 14:1535–1546

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad, Bufocalamita, metapopulations. Oikos 88:641–651

    Article  Google Scholar 

  • Sadinski WJ, Dunson WA (1992) A multilevel study of effects of low pH on amphibians of temporary ponds. J Herpetol 26:413–422

    Article  Google Scholar 

  • Sanzo D, Hecnar SJ (2006) Effects of deicing salt (NaCl) on larval wood frogs (Ranasylvatica). Environ Pollut 140:247–256

    Article  PubMed  CAS  Google Scholar 

  • Semlitsch RD, Reyer HU (1992) Performance of tadpoles from the hybridogeneticRanaesculenta complex: interactions with pond drying and interspecific competition. Evolution 46:665–676

    Article  Google Scholar 

  • Seppä P, Laurila A (1999) Genetic structure of island populations of the anurans Ranatemporaria and Bufobufo. Heredity 82:309–317

    Article  PubMed  Google Scholar 

  • Shepard DB, Kuhns AR, Dreslik MJ, Phillips CA (2008) Roads as barriers to animal movement in fragmented landscapes. Anim Conserv 11:288–296

    Article  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, McKelvey K, Allendorf FW, Luikart G (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107

    Article  Google Scholar 

  • Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79

    Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Smouse PE, Peakall R, Gonzalez E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400

    Article  PubMed  Google Scholar 

  • Snodgrass JW, Casey RE, Joseph DE, Simon JA (2008) Microcosm investigations of storm water pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environ Pollut 154:291–297

    Article  PubMed  CAS  Google Scholar 

  • Society for the Protection of New Hampshire’s Forest (SPNHF) (2005) New Hampshire’s changing landscape. SPNHF, Concord

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscapegenetics of the blotched tiger salamander (Ambystomatigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Squire T, Newman RA (2002) Fine-scale population structure in the wood frog (Ranasylvatica) in a northern woodland. Herpetologica 58:119–130

    Article  Google Scholar 

  • Stevens CE, Paszkowski CA (2004) Using chorus-size ranks from call surveys to estimate reproductive activity of the wood frog (Ranasylvatica). J Herpetol 38:404–410

    Article  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Google Scholar 

  • Thorne S, Sundquist D (2001) New Hampshire’s vanishing forest: conversion, fragmentation, and parcelization of forest in the granite state. Society for the Protection of New Hampshire Forest, Concord

    Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communties. Conserv Biol 14:18–30

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vandergast AG, Perry WM, Lugo RV, Hathaway SA (2010) Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity. Mol Ecol Resour 11:158–161

    Article  PubMed  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  PubMed  CAS  Google Scholar 

  • Veysey JS, Mattfeldt SD, Babbitt KJ (2011) Comparative influence of isolation, landscape, and wetland characteristics on egg-mass abundance of two pool-breeding amphibian species. Landscape Ecol 26:661–672

    Article  Google Scholar 

  • Vos CC, Antonisse-de Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Ranaarvalis). Heredity 86:598–608

    Article  PubMed  CAS  Google Scholar 

  • Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Article  Google Scholar 

  • Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    PubMed  CAS  Google Scholar 

  • Woltz HW, Gibbs JP, Ducey PK (2008) Road crossing structures for amphibians and reptiles: informing design through behavioral analysis. Biol Conserv 141:2745–2750

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Yanes MJ, Velasco M, Suarez F (1995) Permeability of roads and railways to vertebrates: the importance of culverts. Biol Conserv 71:217–222

    Article  Google Scholar 

Download references

Acknowledgments

Partial funding for this research was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution Number 2512. We are grateful to S. Coster, J. Purrenhage, and J. Walsh for their assistance in the field and to numerous private landowners for allowing us access to ponds on their properties. We thank the University of New Hampshire Hubbard Center for Genome Studies and J. Anderson for assistance with fragment analysis, and D. Berlinsky for generous use of his laboratory facilities. We also thank M. Daley, J. Potter, and the UNH Water Quality Analysis Laboratory for assistance with water quality analyses and D. Hocking for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne I. Kovach.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielsen, C.G., Kovach, A.I., Babbitt, K.J. et al. Limited effects of suburbanization on the genetic structure of an abundant vernal pool-breeding amphibian. Conserv Genet 14, 1083–1097 (2013). https://doi.org/10.1007/s10592-013-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0497-4

Keywords

Navigation