Do rivers and human-induced habitat fragmentation affect genetic diversity and population structure of the European ground squirrel at the edge of its Pannonian range?

Abstract

The European ground squirrel (EGS) (Spermophilus citellus) populations of Vojvodina (Serbia) represent the southernmost part of its distribution in the Pannonian lowland. For species with low dispersal abilities a presence of even weak barriers can have significant influence on genetic structure among adjacent populations. We examined here the effects of habitat fragmentation and river barriers on the genetic structure of the EGS based on 12 microsatellite loci. Bayesian clustering methods were used as additions to classical population genetic approaches. We found that EGS populations in Vojvodina are highly fragmented, but their genetic variation is still higher than in peripheral populations in Central Europe. Populations in Vojvodina consistently grouped into three genetic clusters. The Danube, but not the Tisza River, represents an important barrier to gene flow. EGS populations in the studied area did not show the signs of recent genetic bottlenecks, as would be expected from observations of recent population declines. Conservation strategy should be focused on maintenance of remained suitable habitats and optimal population sizes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier: Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France)

  2. Bell KC, Matocq MD (2011) Regional genetic subdivision in the Mohave ground squirrel: evidence of historic isolation and ongoing connectivity in a Mojave Desert endemic. Anim Conserv 14:371–381

    Article  Google Scholar 

  3. Bryja J, Granjon L, Dobigny G, Patzenhauerová H, Konečný A, Duplantier JM, Gauthier P, Colyn M, Durnez L, Lalis A, Nicolas V (2010) Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/geography/genetic interplay. Mol Ecol 19:4783–4799

    PubMed  Article  CAS  Google Scholar 

  4. Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2462

    PubMed  Article  CAS  Google Scholar 

  5. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    PubMed  Article  CAS  Google Scholar 

  6. Ćirović D, Ćosić N (2011) Viability of the European ground squirrel (Spermophilus citellus L. 1766) populations in Serbia—final report. Ministry of Environment and Spatial Planing, Republic of Serbia

    Google Scholar 

  7. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9:539

    PubMed  Article  Google Scholar 

  8. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  9. Coroiu C, Kryštufek B, Vohralík V, Zagorodnyuk I (2008) Spermophilus citellus. In: IUCN 2011. IUCN red list of threatened species. Version 2011.2. http://www.iucnredlist.org. Accessed 21 Oct 2011

  10. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    Google Scholar 

  11. Djan M, Obreht D, Vapa Lj (2006) Polymorphism of mtDNA regions in brown hare (Lepus europaeus) from Vojvodina (Serbia and Montenegro). Eur J Wildl Res 52:288–291

    Article  Google Scholar 

  12. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographic ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    PubMed  Article  CAS  Google Scholar 

  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    PubMed  Article  CAS  Google Scholar 

  14. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  15. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  16. Fontaine MC, Baird SJE, Piry S, Ray N, Tolley KA, Duke S, Birkun A Jr, Ferreira M, Jauniaux T, Lavona A, Öztürk B, Öztürk AA, Ridoux V, Rogan E, Sequeira M, Siebert U, Vikingsson GA, Bouquegneau JM, Michaux JR (2007) Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters. BMC Biol 5(30):1–16

    Google Scholar 

  17. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  18. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Garner A, Rachlow JL, Waits LP (2005) Genetic diversity and population divergence in fragmented habitats: conservation of Idaho ground squirrel. Conserv Genet 6:759–774

    Article  Google Scholar 

  20. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices. v 2.9.3.2, Institut d’Ecologie, Laboratorie de Zoologie, Lausanne, Switzerland. http://www.unil.ch/izea/softwares/fstat.html. Accessed 20 Sept 2008

  21. Guillot G, Estoup A, Mortier F, Cosson J (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    PubMed  Article  CAS  Google Scholar 

  22. Guillot G, Mortier F, Estoup A (2005b) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  23. Hedrick PW (2005) Genetics of populations, 3rd edn. Jones & Bartlett Publishers, Sudbury

    Google Scholar 

  24. Helgen KM, Cole FR, Helgen LE, Wilson DE (2009) Generic revision in the Holarctic ground squirrel genus Spermophilus. J Mamm 90:270–305

    Article  Google Scholar 

  25. Hulová Š, Sedláček F (2008) Population genetic structure of the European ground squirrel in the Czech Republic. Conserv Genet 9:615–625

    Article  Google Scholar 

  26. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6: 13. http://ibdws.sdsu.edu/. Accessed 14 Dec 2012

  27. Keller FL, Jeffery JK, Arcese P, Beaumont AM, Hochachka MW, Smith NMJ, Bruford WM (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond B 268:1387–1394

    Article  CAS  Google Scholar 

  28. Kennis J, Nicolas V, Hulselmans J, Katuala PGB, Wendelen W, Verheyen E, Dudu AM, Leirs H (2011) The impact of the Congo River and its tributaries on the rodent genus Praomys: speciation origin or range expansion limit? Zool J Linn Soc 163:983–1002

    Article  Google Scholar 

  29. Kirschning J, Zachos EF, Cirovic D, Radovic TI, Hmwe SS, Hartl BG (2007) Population genetic analysis of Serbian red foxes (Vulpes vulpes) by means of mitochondrial control region sequences. Biochem Genet 45:409–420

    PubMed  Article  CAS  Google Scholar 

  30. Knežev M (2006) Ecological research Tisza 2005. Tiski cvet, Novi Sad (in Serbian)

  31. Koshev YS, Kocheva MA (2007) Environmental factors and distribution of European ground squirrel (Spermophilus citellus) in Bulgaria. J Ecol Saf 1:277–287

    Google Scholar 

  32. Lada H, Nally RM, Taylor AC (2008) Distinguishing past from present gene flow along and across a river: the case of the carnivorous marsupial (Antechinus flavipes) on southern Australian floodplains. Conserv Genet 9:569–580

    Article  Google Scholar 

  33. Loxterman JL (2011) Fine scale population genetic structure of pumas in the Intermountain West. Conserv Genet 12:1049–1059

    Article  Google Scholar 

  34. Lugon-Moulin N, Hausser J (2002) Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (Sorex araneus). Mol Ecol 11:785–794

    PubMed  Article  CAS  Google Scholar 

  35. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  36. Luikart G, Amish SJ, Winnie J, Beja-Pereira A, Godinho R, Allendorf FW, Harris RB (2011) High connectivity among argali sheep from Afghanistan and adjacent countries: inferences from neutral and candidate gene microsatellites. Conserv Genet 12:921–931

    Article  Google Scholar 

  37. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  38. Matějů J, Nová P, Uhlíková J, Hulová Š, Cepáková E (2008) Distribution of the European ground squirrel (Spermophilus citellus) in the Czech Republic in 2002–2008. Lynx 39:277–294

    Google Scholar 

  39. Mitchell-Jones AJ, Amori G, Bogdanowicz W, Kryštufek B, Reijnders PJH, Spitzenberger F, Stube M, Thissen JBM, Vohralík V, Zima J (1999) The atlas of European mammals. Academic, London

    Google Scholar 

  40. Mossman CA, Waser PM (2001) Effects of habitat fragmentation on population genetic structure in the white-footed mouse (Peromyscus leucopus). Can J Zool 79:285–295

    Google Scholar 

  41. Neumann K, Jansman H, Kayser A, Maak S, Gattermann R (2004) Multiple bottlenecks in threatened western European populations of the common hamster Cricetus cricetus (L.). Conserv Genet 5:181–193

    Article  CAS  Google Scholar 

  42. Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163

    Article  Google Scholar 

  43. Petrov MB (1992) Mammals of Yugoslavia, insectivores and rodents. Natural History Museum of Belgrade, Belgrade

    Google Scholar 

  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  45. Puzović S (2008) Power transmission lines as structural factor in birds habitats. Dissertation, University of Novi Sad (in Serbian)

  46. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  47. Říčanová Š, Bryja J, Cosson JF, Gedeon C, Choleva L, Ambros M, Sedláček F (2011) Depleted genetic variation of the European ground squirrel in Central Europe in both microsatellites and the major histocompatibility complex gene: implications for conservation. Conserv Genet 12:1115–1129

    Article  Google Scholar 

  48. Ružić A (1950) Contribution to the knowledge of ecology of the ground squirrel Citellus citellus L. Proc Inst Ecol Biogeogr 1:97–140 (in Serbian)

    Google Scholar 

  49. Ružić A (1979) Decreasing number of the ground squirrel (Citellus citellus L.) populations in Yugoslavia in the period 1947–1977. Ecology 14:185–194 (in Serbian with the abstract in English)

    Google Scholar 

  50. Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  51. Slimen HB, Gedeon CI, Hoffmann IE, Suchentrunk F (2012) Dwindling genetic diversity in European ground squirrels? Mamm Biol 77:13–21

    Google Scholar 

  52. Strijsktra AM, Daan S (1997) Sleep during arousal episodes as a function of prior torpor duration in hibernating European ground squirrel. J Sleep Res 6:36–43

    Article  Google Scholar 

  53. Trizio I, Crestanello B, Galbusera P, Wauters LA, Tosi G, Matthysen E, Hauffe HC (2005) Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps. Mol Ecol 14:469–481

    PubMed  Article  CAS  Google Scholar 

  54. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from Grant Agency of the Academy of Science, Czech Republic (KJB601410816), European Science Foundation grant (ConGen SV/2159), institutional support RVO: 68081766 and Grant from Ministry of Education and Science of the Republic of Serbia (Contract TR 31009). JB was also partially supported by Ministry of Education CR (Biodiversity Research Centre no. LC06073 and Long-term research plan MSM 0021622416). We would like to thank the two anonymous referees for useful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duško Ćirović.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ćosić, N., Říčanová, Š., Bryja, J. et al. Do rivers and human-induced habitat fragmentation affect genetic diversity and population structure of the European ground squirrel at the edge of its Pannonian range?. Conserv Genet 14, 345–354 (2013). https://doi.org/10.1007/s10592-013-0466-y

Download citation

Keywords

  • Souslik
  • Barriers
  • Genetic structure
  • Gene flow
  • Microsatellites