Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata)

Abstract

As North American species’ ranges shift northward in response to climate change, populations isolated in high-elevation habitat “islands” at the southern edge of distributions are predicted to decrease in size or be extirpated. Levels of genetic structure and gene flow and the number of private alleles held within these peripheral populations can be used as a measure of the potential loss of genetic diversity due to climate change. We use GIS-based climate niche models to project geographic distributions of 15 boreal forest bird species for the year 2080 under two carbon emissions scenarios to predict the extent to which ranges will shift, leading to the extirpation of isolated populations at the southern periphery of the boreal forest. Breeding distributions of nearly all boreal bird species are predicted to expand as they shift northward, but will dramatically decrease or be completely lost from mountain populations in New York, Vermont, and New Hampshire by 2080. To examine the effect of these shifts on gene pools of migratory bird species we genotyped 178 blackpoll warblers (Setophaga striata) at nine microsatellite loci, sampling four imperiled high-elevation populations and four northern populations. In S. striata 10.4 % of microsatellite alleles were confined to populations expected to be lost due to climate change. However, these accounted for a nonsignificant percent of the genetic structure, and loss of these alleles would not significantly erode species heterozygosity or allelic richness. Our results indicate that isolated southern populations of S. striata, and possibly other migratory species with high gene flow, do not represent genetically isolated, independently evolving units. Efforts to mitigate the effect of climate change on boreal forest birds should focus on species in which peripheral populations harbor significant genetic diversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Able KP, Noon BR (1976) Avian community structure along elevational gradients in the northeastern United States. Oecologia 26:275–294

    Google Scholar 

  2. Anderle RF, Carroll JR (1988) The first atlas of breeding birds in New York State. Cornell, Ithaca

    Google Scholar 

  3. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  4. Avise JC (1989) A role for molecular genetics in the recognition and conservation of endangered species. Trends Ecol Evol 4:279–281

    PubMed  Article  CAS  Google Scholar 

  5. Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer, Sunderland

    Google Scholar 

  6. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741

    PubMed  Article  CAS  Google Scholar 

  7. Banks SC, Ling SD, Johnson CR, Piggott MP, Williamson JE, Beheregaray LB (2010) Genetic structure of a recent climate change-driven range extension. Mol Eco 19:2011–2024

    Article  Google Scholar 

  8. Barret RDH, Schluter D (2007) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  Google Scholar 

  9. Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–415

    PubMed  Article  Google Scholar 

  10. Beale CM, Lennon JL, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc Nat Acad Sci 105:14908–14912

    PubMed  Article  CAS  Google Scholar 

  11. Beaumont LJ, Hughes L, Pitman AJ (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett 11:1135–1146

    PubMed  Google Scholar 

  12. Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Nat Acad Sci 105:4197–4202

    PubMed  Article  CAS  Google Scholar 

  13. Beerling DJ, Huntley B, Bailey JP (1995) Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. J Veg Sci 6:269–282

    Article  Google Scholar 

  14. Bellinger MR, Johnson JA, Toepfer J, Dunn P (2003) Loss of genetic variation in Greater Prairie Chickens following a population bottleneck in Wisconsin, U.S. Conserv Biol 17:717–724

    Article  Google Scholar 

  15. Brelsford A, Milá B, Irwin DE (2012) Hybrid origin of Audubon’s warbler. Mol Ecol 20:2380–2389

    Article  Google Scholar 

  16. Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61

    PubMed  Article  Google Scholar 

  17. Dawson RHG, Gibbs HL, Hobson KA, Yezerinac SM (1997) Isolation of microsatellite DNA markers from a passerine bird, Dendroica petechia (the yellow warbler), and their use in population studies. Heredity 79:506–514

    PubMed  Article  CAS  Google Scholar 

  18. Dial RJ, Berg EE, Timm K, McMahon A (2007) Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: evidence from orthophotos and field plots. J Geophys Res 112:G04015. doi:10.1029/2007JG000453

    Article  Google Scholar 

  19. Eaton EH (1914) Birds of New York. University of the State of New York, Albany

  20. Elith J, Kearney M, Phillips S (2010) The art of modeling range-shifting species. Meth Ecol Evol 1:330–342

    Article  Google Scholar 

  21. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50

    CAS  Google Scholar 

  22. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  23. Frankham R, Ralls K (1998) Inbreeding leads to extinction. Nature 392:441–442

    Article  CAS  Google Scholar 

  24. Frankham R, Callou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge, Cambridge

    Book  Google Scholar 

  25. Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evolution 63:2848–2863

    PubMed  Article  CAS  Google Scholar 

  26. Gordon C, Cooper C, Senior C, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  27. Goudet J (1995) FSTAT: a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  28. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    PubMed  Article  CAS  Google Scholar 

  29. Green DM (2005) Designatable units for the status assessment of endangered species. Conserv Biol 19:1813–1820

    Article  Google Scholar 

  30. Habel JC, Augenstein B, Meyer M, Neve G, Rodder D, Assmann T (2010) Population genetics and ecological niche modelling reveal high fragmentation and potential future extinction of the endangered relict butterfly (Lycaena helle). In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Berlin, pp 417–439

    Chapter  Google Scholar 

  31. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    PubMed  Article  Google Scholar 

  32. Hewitt GM (2004) Genetic consequences of climate oscillations in the quaternary. Philos Trans R Soc London, Ser B 359:183–195

    PubMed  Article  CAS  Google Scholar 

  33. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Chang Biol 12:2272–2281

    Article  Google Scholar 

  34. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Internat J Climatol 25:1965–1978

    Article  Google Scholar 

  35. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    PubMed  Article  Google Scholar 

  36. Huntley B, Collingham YC, Green RE, Hilton GM, Rahbek C, Willis SG (2006) Potential impacts of climate change upon geographical distributions of birds. Ibis 148:8–28

    Article  Google Scholar 

  37. Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climate change on European breeding birds. PLoS ONE 3:e1439

    PubMed  Article  Google Scholar 

  38. Intergovernmental Panel on Climate Change (2000) IPCC Special Report: Emissions Scenarios, IPCC. Cambridge University Press, Cambridge

  39. Intergovernmental Panel on Climate Change (2001) Climate Change 2001: The Scientific Basis, IPCC. http://www.ipcc.ch

  40. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: The Physical Science Basis, IPCC. http://www.ipcc.ch

  41. Jay F, Manel S, Alvarez N, Durand EY, Thuiller W, Holderegger R, Taberlet P, François O (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Mol Ecol 21:2354–2368

    PubMed  Article  Google Scholar 

  42. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  43. Kerchner C, Honzák M, Kemkes R, Richardson A, Townsend J, Rimmer CC (2009) Designing spatially explicit incentive programs for habitat conservation: a case study of the Bicknell’s Thrush wintering grounds. Ecol Econ 69:2108–2115

    Article  Google Scholar 

  44. King TL, Eackles MS, Henderson AP, Bocetti CI, Currie D, Wunderle JM (2005) Microsatellite DNA markers for delineating population structure and kinship among endangered Kirtland’s Warbler (Dendroica kirtlandii). Mol Ecol Notes 5:567–571

    Article  Google Scholar 

  45. King DI, Lambert JD, Buonaccorsi JP, Prout LS (2008) Avian population trends in the vulnerable montane forests of the Northern Appalachians, USA. Biodivers Conserv 17:2691–2700

    Article  Google Scholar 

  46. Knowles LL (2009) Statistical Phylogeography. Ann Rev Ecol Evol Syst 40:593–612

    Article  Google Scholar 

  47. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148

    PubMed  Article  Google Scholar 

  48. La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc London, Ser B 277:3401–3410

    Article  Google Scholar 

  49. Lacy RC (1997) Importance of genetic variation to viability of mammal populations. J Mammal 78:320–335

    Article  Google Scholar 

  50. Landres PB, Verner J, Thomas JW (1988) Ecological uses of vertebrate indicator species: a critique. Conserv Biol 2:316–328

    Article  Google Scholar 

  51. Larson S, Jameson R, Etnier M, Flemings M, Bentzen P (2002) Loss of genetic diversity in sea otters (Enhydra lutris) associated with the fur trade of the 18th and 19th centuries. Mol Ecol 11:1899–1903

    PubMed  Article  CAS  Google Scholar 

  52. Larsson JK, Jansman HAH, Segelbacher G, Höglung J, Koelewijn HP (2008) Genetic impoverishment of the black grouse (Tetrao tetrix) population in Netherlands: detectable only with a reference from the past. Mol Ecol 17:1897–1904

    PubMed  Article  Google Scholar 

  53. Leonard JA, Vila C, Wayne RK (2005) Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus). Mol Ecol 14:9–17

    PubMed  Article  Google Scholar 

  54. Lewis PO, Zaykin D (1999) GDA: software for the analysis of discrete genetic data. http://alleyn.eeb.uconn.edu/gda/

  55. Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS ONE 3:e2502

    PubMed  Article  Google Scholar 

  56. McAlpine S (1993) Genetic heterozygosity and the reproductive success in the green treefrog, Hyla cinerea. Heredity 70:553–558

    Article  Google Scholar 

  57. McGowan KJ, Corwin K (2008) The second atlas of breeding birds in New York State. Cornell, Ithaca

    Google Scholar 

  58. Milá B, Smith TB, Wayne RK (2007) Speciation and rapid phenotypic differentiation in the yellow-rumped warbler Dendroica coronata complex. Mol Ecol 16:159–173

    PubMed  Article  Google Scholar 

  59. Mitrovski P, Hoffmann AA, Heinze DA, Weeks AR (2008) Rapid loss of genetic variation in an endangered possum. Biol Lett 4:134–138

    PubMed  Article  CAS  Google Scholar 

  60. Moritz C (1994) Defining ‘Evolutionary Significant Units’ for conservation. Trends Ecol Evol 9:373–375

    PubMed  Article  CAS  Google Scholar 

  61. Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    PubMed  Article  CAS  Google Scholar 

  62. Muster C, Maddison WP, Uhlmann S, Berendonk TU, Vogler AP (2009) Arctic-alpine distribution—Metapopulations on a continental scale? Am Nat 173:313–326

    PubMed  Article  Google Scholar 

  63. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  64. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    PubMed  Article  Google Scholar 

  65. Paxinos EE, James HF, Olson SL, Ballou JD, Leonard JA, Fleischer RC (2002) Prehistoric decline of genetic diversity in the nene. Science 296:1827

    PubMed  Article  CAS  Google Scholar 

  66. Pearson RG, Dawson TE (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  67. Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees CD (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  68. Pease KM, Freedman AH, Pollinger JP et al (2009) Landscape genetics of a California mule deer (Odocoileus hemionus): the roles of ecological and historical factors in generating differentiation. Mol Ecol 18:1848–1862

    PubMed  Article  Google Scholar 

  69. Peterson AT (2001) Predicting species geographic distributions based on ecological niche modeling. Condor 103:559–605

    Article  Google Scholar 

  70. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  71. Poole A (ed) (2005) The Birds of North America Online. http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/BNA/. Cornell Laboratory of Ornithology, Ithaca

  72. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    CAS  Google Scholar 

  73. Ralston J, Kirchman JJ (2012) Continent-scale genetic structure in a boreal forest migrant, the blackpoll warbler (Setophaga striata). The Auk 129: 467–478

    Google Scholar 

  74. Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Nat Acad Sci 104:10288–10293

    Google Scholar 

  75. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  76. Rich TD, Beardmore CJ, Berlanga H et al (2004) Partners in flight North American land bird conservation plan. Cornell, Ithaca

    Google Scholar 

  77. Richards CL, Carstens BC, Knowles LL (2007) Distribution modeling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographic hypotheses. J Biogeogr 34:1833–1845

    Article  Google Scholar 

  78. Rodenhouse NL, Matthews SN, McFarland KP et al (2008) Potential effects of climate change on birds of the Northeast. Mitig Adapt Strateg Glob Change 13:517–540

    Article  Google Scholar 

  79. Rodenhouse NL, Christenson LM, Parry D, Green LE (2009) Climate change effects on native fauna of northeastern forests. Can J For Res 39:249–263

    Article  Google Scholar 

  80. Ross AM, Johnson G (2011) Recovery plan for New York state populations of spruce grouse (Falcipennis canadensis). New York State Department of Environmental Conservation, Albany

  81. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Google Scholar 

  82. Saccheri I, Kuusaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  83. Saurez F, Binkley D, Kaye MW (1999) Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience 6:465–470

    Google Scholar 

  84. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  85. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    Article  Google Scholar 

  86. Slatkin M (1987) Gene flow and geographic structure of natural populations. Nature 236:787–792

    CAS  Google Scholar 

  87. Stenzler LM, Fraser R, Lovette IJ (2004) Isolation and characterization of 12 microsatellite loci from golden-winger warblers (Vermivora chrysoptera) with broad cross-taxon utility in emberizine songbirds. Mol Ecol Notes 4:602–604

    Article  CAS  Google Scholar 

  88. Studds CE, McFarland KP, Aubry Y, Rimmer CC, Hobson KA, Marra PP, Wassenaar LI (2012) Stable-hydrogen isotope measures of natal dispersal reflect observed population declines in a threatened migratory songbird. Divers Distrib. doi:10.111/j.1472-4642.2012.00931.x

    Google Scholar 

  89. Taylor SS, Jamieson IG, Wallis GP (2007) Historic and contemporary levels of genetic variation in two New Zealand passerines with different histories of decline. J Evol Biol 20:2035–2047

    PubMed  Article  CAS  Google Scholar 

  90. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027

    Article  Google Scholar 

  91. Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Article  Google Scholar 

  92. Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinnellian niche through a century of climate change. Proc Nat Acad Sci 106:19637–19643

    PubMed  Article  CAS  Google Scholar 

  93. Tolley KA, Makokha JS, Houniet DT, Swart BL, Matthee CA (2009) The potential for predicted climate shifts to impact genetic landscapes of lizards in the South African Cape Floristic region. Mol Phylogenet Evol 51:120–130

    PubMed  Article  Google Scholar 

  94. United States Forest Service (2006) White Mountain National Forest: Monitoring and Evaluation Report 2006. http://www.fs.fed.us/r9/forests/white_mountain/publications/

  95. van Els P, Cicero C, Klicka J (2012) High latitudes and high genetic diversity: phylogeography of a widespread boreal bird, the gray jay (Perisoreus canadensis). Mol Phylogenet Evol 63:456–465

    PubMed  Article  Google Scholar 

  96. Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353

    Article  Google Scholar 

  97. Waite TA, Strickland D (2006) Climate change and the demographic demise of a hoarding bird living on the edge. Proc R Soc London, Ser B 273:2809–2813

    Article  Google Scholar 

  98. Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the endangered species act. Mar Fish Rev 53:11–22

    Google Scholar 

  99. Westemeier RL, Brawn JD, Simpson SA et al (1998) Tracking the long-term decline and recovery of an island population. Science 282:1695–1698

    PubMed  Article  CAS  Google Scholar 

  100. Zuckerburg B, Woods AM, Porter W (2009) Poleward shifts in breeding bird distributions in New York State. Glob Chang Biol 15:1866–1883

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the New York State Museum and by research grants to JR from the American Museum of Natural History Frank Chapman Fund, University at Albany Graduate Student Organization, and State University of New York Benevolent Association. Occurrence data provided to ORNIS and GBIF portals by the following institutions: University of Alaska Museum, Berkley Museum of Vertebrate Zoology, American Museum of Natural History, Harvard Museum of Comparative Zoology, Smithsonian National Museum of Natural History, Royal Ontario Museum, Cornell University, University of Minnesota Bell Museum of Natural History, University of Washington Burke Museum, University of Alberta Museum, Field Museum, Louisiana State University Museum, Michigan State University Museum, UCLA Dickey Collection, Canadian Museum of Nature, Yale University Peabody Museum, University of Michigan Museum of Zoology, University of Puget Sound Slate Museum of Natural History and eBird. We thank the following individuals and institutions for contributing tissue samples: K. McFarland and Vermont Center for Ecostudies; Y. Aubry and S. Paladin; W.V. DeLuca; H. Askanas; E. Adams; UCLA Conservation Genetics Resources Center; Royal Ontario Museum; Bell Museum of Natural History. We thank MK Gonder for use of her ABI 3130 Genetic Analyzer and assistance with Eigensoft, and R. Kays for assistance with ArcGIS. J. Bopp, B. Whittam, A. Bartels, and D. Simpson assisted with field work. We thank R. Kays, and two anonymous reviewers for helpful comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel Ralston.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ralston, J., Kirchman, J.J. Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata) . Conserv Genet 14, 543–555 (2013). https://doi.org/10.1007/s10592-012-0418-y

Download citation

Keywords

  • Species distribution models
  • Climate change
  • Setophaga striata
  • Conservation genetics
  • Microsatellites
  • Boreal forest birds