Skip to main content

Evaluating the efficacy of non-invasive genetic methods and estimating wolf survival during a ten-year period

Abstract

Genetic capture–recapture (CR) analysis is a highly promising tool to estimate population parameters and monitor populations through time. However, its level of accuracy has rarely been assessed and comparisons with traditional estimates in controlled settings have rarely been performed. We used CR analysis with long-term fecal genotyping data and applied open-population models to estimate survival rates and assess trend in abundance of wolves in Isle Royale over 10 years, while simultaneously estimating those parameters with traditional aerial-based techniques that are believed to be reasonably accurate. Comparison of the techniques indicated that there is a good correspondence of estimates only when the effort in genetic sampling is high, which guarantees a high recapture probability. Juvenile wolves had higher annual CR survival rates than adult wolves; kill rates most affected wolf survival in this natural ecosystem, and higher annual kill rates were correlated with higher annual adult survival. Adult survival (but not juvenile survival) was an important predictor of population growth rate. Hence, we show that kill rates indirectly affected population growth rate and directly affected adult survival rate. These reliable estimates of survival have unique value because the Isle Royale wolf population is not exposed to any human-caused mortality. Therefore, knowing long-term patterns of annual survival and its relationship to population growth rate for a not hunted wolf population represents a critical baseline for wolf conservation throughout its worldwide distribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adams JR, Waits LP (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8:123–131

    Article  CAS  Google Scholar 

  • Adams JR, Vucetich LM, Hedrick PW, Peterson RO, Vucetich JA (2011) Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proc R Soc B 278:3336–3344. doi:10.1098/rspb.2011.0261

    PubMed  Article  Google Scholar 

  • Arrendal J, Vila C, Björklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8:1097–1107

    Article  Google Scholar 

  • Ballard WB, Whitman JS, Gardner CL (1987) Ecology of an exploited wolf population in south-central Alaska. Wildl Monogr 98:1–54

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York 488 pp

    Google Scholar 

  • Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography. 32:1071–1074

    Google Scholar 

  • Ciucci P, Chapron G, Guberti V, Boitani L (2007) Estimation of mortality parameters from (biased) samples at death: are we getting the basics right in wildlife field studies? A response to Lovari et al. (2007). J Zool 273:125–127

    Article  Google Scholar 

  • Creel S, Rotella JJ (2010) Meta-analysis of relationships between human offtake, total mortality and population dynamics of gray wolves (Canis lupus). PLoS ONE 5(9):e12918. doi:10.1371/journal.pone.0012918

    PubMed  Article  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowtone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    PubMed  Article  Google Scholar 

  • Cubaynes S, Pradel R, Choquet R, Duchamp C, Gaillard J-M, Lebreton J-D, Marboutin E, Miquel C, Reboulet A-M, Poillot C, Taberlet P, Gimenez O (2010) Importance of accounting for detection heterogeneity when estimating abundance: the case of French wolves. Conserv Biol 24(2):621–626

    PubMed  Article  Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661

    PubMed  Article  CAS  Google Scholar 

  • Frantzen MAJ, Silk JB, Ferguson JWH, Wayne RK, Kohn MH (1998) Empirical evaluation of preservation methods for faecal DNA. Mol Ecol 7:1423–1428

    PubMed  Article  CAS  Google Scholar 

  • Fuller TK (1989) Population dynamics of wolves in North-Central Minnesota. Wildl Monogr 105:1–41

    Google Scholar 

  • Fuller TK, Mech LD, Cochrane JF (2003) Wolf population dynamics. In: Mech LD, Boitani L (eds) Wolves. Behavior, ecology, and conservation. The University of Chicago Press, Chicago, pp 161–191

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13:58–63

    PubMed  Article  CAS  Google Scholar 

  • Gogan PJP, Olexa EM, Thomas N, Kuhen D, Podruzny KM (2000) Ecological status of gray wolves in and adjacent to Voyageurs National Park, Minnesota. USGS, NRM Science Center, Bozeman

    Google Scholar 

  • Guschanski K, Vigilant L, McNeilage A, Gray M, Kagoda E, Robbins MM (2009) Counting elusive animals: comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol Conserv 142:290–300

    Article  Google Scholar 

  • Hayes RD, Harestad AS (2000) Demography of a recovering wolf population in the Yukon. Can J Zool 78:60–66

    Article  Google Scholar 

  • Holmes NG, Dickens HF, Parker HL, Binns MM, Mellersh CS, Sampson J (1995) Eighteen canine microsatellites. Anim Genet 26:132–133

    PubMed  Article  CAS  Google Scholar 

  • Kendall KC, Stetz JB, Boulanger J, MacLeod AC, Paetkau D, White GC (2009) Demography and genetic structure of a recovering grizzly bear population. J Wildl Manag 73(1):3–17

    Article  Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals—a unified approach with case-studies. Ecol Monogr 62(1):67–118

    Article  Google Scholar 

  • Lovari S, Sforzi A, Scala C, Fico R (2007) Mortality parameters of the wolf in Italy: does the wolf keep himself from the door? J Zool 272:117–124

    Article  Google Scholar 

  • Lukacs PM, Burnham KP (2005) Review of capture–recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14:3909–3919

    PubMed  Article  Google Scholar 

  • Marucco F, Pletscher DH, Boitani L, Schwartz MK, Pilgrim KL, Lebreton J-D (2009) Wolf survival and population trend using non-invasive capture–recapture techniques in the Western Alps. J Appl Ecol 46:1003–1010

    Article  Google Scholar 

  • Marucco F, Boitani L, Pletscher D, Schwartz MK (2011) Bridging the gaps between non-invasive genetic sampling and population parameter estimation. Eur J Wildl Res 57:1–13

    Article  Google Scholar 

  • McDonald TL, Amstrup SC (2001) Estimation of population size using open capture–recapture models. J Agric Biol Environ Stat 6(2):206–220

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2004a) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68(3):439–448

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2004b) Providing reliable and accurate genetic capture-mark-recapture estimates in a cost-effective way. J Wildl Manag 68(3):453–456

    Article  Google Scholar 

  • Mech LD, Boitani L (2003) Wolves: behavior, ecology and conservation. University of Chicago Press, Chicago 472 pp

    Google Scholar 

  • Mellersh CS, Langsotn AA, Acland GM, Fleming MA, Ray K, Wiefand NA, Francisco LV, Gibbs M, Aguirre GD, Ostrander EA (1997) A linkage map of the canine genome. Genomics 46:326–336

    PubMed  Article  CAS  Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, Sunderland

  • Murphy MA, Waits LP, Kendall KC, Wasser SK, Higbee JA, Bogden R (2002) Long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conserv Genet 3:435–440

    Article  CAS  Google Scholar 

  • Neff MW, Broman KW, Mellersh CS, Ray K, Ackland GM, Aguirre GD, Ziegle JS, Ostrander EA, Rine J (1999) A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151:803–820

    PubMed  CAS  Google Scholar 

  • Ostrander EA, Sprague GF, Rine J (1993) Identification and characterization of dinucleotide repeat (ca)n markers for genetic-mapping in dog. Genomics 16:207–213

    PubMed  Article  CAS  Google Scholar 

  • Ostrander EA, Mapa FA, Yee M, Rine J (1995) One hundred and one new simple sequence repeat-based markers for the canine genome. Mamm Genome 6:192–195

    PubMed  Article  CAS  Google Scholar 

  • Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12:1375–1387

    PubMed  Article  CAS  Google Scholar 

  • Peterson RO (1977) Wolf ecology and prey relationships on Isle Royale. Scient. Monogr. Ser. No. 11, U.S. National Park Service, Washington, DC

  • Peterson RO, Thomas NJ, Thurber JM, Vucetich JA, Waite TA (1998) Population limitation and the wolves of Isle Royale. J Mammal 79(3):487–841

    Article  Google Scholar 

  • Pledger S, Efford M (1998) Correction of bias due to heterogeneous capture probability in capture–recapture studies of open populations. Biometrics 54:888–898

    Article  Google Scholar 

  • Pradel R (1993) Flexibility in survival analysis from recapture data: handling trap-dependence. In: Lebreton J-D, North PM (eds) Marked individuals in the study of bird population. Birkhaüser Verlag, Basel, pp 29–37

    Google Scholar 

  • Pradel R, Hines JE, Lebreton J-D, Nichols JD (1997) Capture–recapture survival models taking account of transients. Biometrics 53:60–72

    Article  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33

    PubMed  Article  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd edn. MacMillan, New York

  • Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Philos Trans R Soc Lond B 357:1153–1170

    Article  Google Scholar 

  • Solberg KH, Bellemain E, Drageset OM, Taberlet P, Swenson JE (2006) An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursos arctos) population size. Biol Conserv 128:158–168

    Article  Google Scholar 

  • Stenglein JL, Waits L, Ausband D, Zager P, Mack C (2010) Efficient, noninvasive genetic sampling for monitoring reintroduced wolves. J Wildl Manag 74:1050–1058

    Article  Google Scholar 

  • Sundqvist AK, Ellegren H, Olivier M, Vila C (2001) Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Mol Ecol 10:1959–1966

    PubMed  Article  CAS  Google Scholar 

  • Taberlet P, Camarra JJ, Griffin S, Uhres E, Hanotte O, Waits LP, DuboisPaganon C, Burke T, Bouvet J (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6(9):869–876

    PubMed  Article  CAS  Google Scholar 

  • Valiere N (2002) Gimlet: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379

    CAS  Google Scholar 

  • Vucetich JA, Peterson RO (2004) The influence of prey consumption and demographic stochasticity on population growth rate of Isle Royale wolves Canis lupus. Oikos 107:309–320

    Article  Google Scholar 

  • Vucetich JA, Peterson RO, Schaefer CL (2002) The effect of prey and predator densities on wolf predation. Ecology 83(11):3003–3013

    Article  Google Scholar 

  • Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    PubMed  Article  CAS  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–138

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego, 817 pp

  • Zhan XJ, Li M, Zhang ZJ, Goossens B, Chen YP, Wang HJ, Bruford MW, Wei FW (2006) Molecular censusing doubles giant panda population estimate in a key nature reserve. Curr Biol 16(12):R451–R452

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. National Science Foundation (DEB-0918247) and Isle Royale National Park (CESU Task Agreement No. J6310110025). ROP is also funded by the Robbins Chair, Michigan Technological University. We thank K. Griffin for useful suggestions in CR analysis and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marucco.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marucco, F., Vucetich, L.M., Peterson, R.O. et al. Evaluating the efficacy of non-invasive genetic methods and estimating wolf survival during a ten-year period. Conserv Genet 13, 1611–1622 (2012). https://doi.org/10.1007/s10592-012-0412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0412-4

Keywords

  • Capture-recapture
  • Isle Royale
  • Microsatellite DNA
  • Non-invasive
  • Survival
  • Wolves