Skip to main content
Log in

Morphological, molecular and statistical tools to identify Castanea species and their hybrids

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate, in relation to reference samples, the genetic structure of several natural Castanea populations of unknown origin and of hybrids from the clone collection of the Lourizán Forest Research Center. A total of 115 individuals sampled from four Castanea sativa stands located in the northwest of Spain, 61 Castanea crenata individuals and 27 Castanea mollissima individuals were classified on the basis of four morphological traits, and genotyped with 11 microsatellite loci to define a set of reference samples. The data analyzed with the program STRUCTURE detected four clusters: the two Asiatic species and two clusters in C. sativa. From these reference samples, pure individuals and hybrids of known genealogy were simulated to determine the efficiency with which STRUCTURE and NEWHYBRIDS assigned them to pure or hybrid groups and to a specific genealogical class, respectively. As expected, the discrimination and assignment of the simulated individuals improved with increasing F st value. The two clusters identified within C. sativa may correspond to gene pools with different adaptive characteristics previously identified in provenance tests; pure and admixed populations of both C. sativa gene pools were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BC(Cc):

Backcross to Castanea crenata

BC(Cm):

Backcross to Castanea mollissima

BC(Cs):

Backcross to Castanea sativa

BC(NCs):

Backcross to Northern cluster of Castanea sativa

BC(SCs):

Backcross to Southern cluster of Castanea sativa

Cc:

Castanea crenata

Cm:

Castanea mollissima

F st :

Inbreeding coefficient

F1 :

First filial generation

F2 :

Second filial generation

K :

Number of clusters

LnP(K):

Posterior probability of the data for a given K

N :

Number of individuals

NCs:

Northern cluster of Castanea sativa

PCR:

Polymerase chain reaction

SCs:

Southern cluster of Castanea sativa

ΔK :

An ad hoc quantity based on the second-order rate of change of the likelihood function with respect to K

π:

Type of prior in use for the mixing proportions in NEWHYBRIDS

θ:

Type of prior in use for the allele frequencies in NEWHYBRIDS

References

  • Anderson EC (2008) Bayesian inference of species hybrids using multilocus dominant genetic markers. Phil Trans R Soc B 363:2841–2850

    Article  PubMed  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  CAS  Google Scholar 

  • BOLETÍN OFICIAL DEL ESTADO, 2007. Resolución del 25 de Octubre de 2007 de la Dirección General de Agricultura, por la que se publica la ampliación del Catálogo de materiales de base de diversas especies forestales de reproducción de las categorias identificada, cualificada y controlada. BOE núm.27 del 13/11/2007

  • Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241

    Article  CAS  Google Scholar 

  • Camus A (1929) Les chataigniers. Monografía des genres Castanea et Castanopsis. Paul Chevalier, Paris

    Google Scholar 

  • Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179

    Article  Google Scholar 

  • Díaz R, Johnsen Ø, Fernández-López J (2009) Variation in spring and autumn freezing resistance among and within Spanish wild populations of Castanea sativa. Ann For Sci 66:708

    Article  Google Scholar 

  • Elorrieta J (1949) El castaño en España, vol 48. Ministerio de Agricultura, IFIE, Madrid

    Google Scholar 

  • Evanno G, Regnauts S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Fernández-López J (2011) Identification of the genealogy of interspecific hybrids between Castanea sativa, Castanea crenata and Castanea mollissima. For Syst 1:65–80

    Google Scholar 

  • Fernández-López J, Monteagudo AB (2010) Genetic structure of wild Spanish populations Castanea sativa as revealed by isozyme analysis. For Syst 19:156–169

    Google Scholar 

  • Fernández-López J, Pereira-Lorenzo S, Miranda-Fontaíña ME (1992) Fog and substrate conditions for chestnut propagation by leafy cuttings. Symposium Proceedings Mass Production Technology for Genetically improved fast growing forest tree species. AFOCEL/IUFRO I:379–383

    Google Scholar 

  • Fernández-López J, Miranda-Fontaíña ME, Pereira-Lorenzo S (1995) Esquema de la producción de materiales clonales forestales y frutales de castaño híbrido (Castanea crenata × Castanea sativa). ITEA 91:149–156

    Google Scholar 

  • Fernández-López J, Zas R, Blanco-Silva R, Díaz R (2005a) Geographic differentiation in adaptive traits of wild chestnut Spanish populations (Castanea sativa Miller). Invest Agrar Sist Recur For 14:13–26

    Google Scholar 

  • Fernández-López J, Zas R, Díaz R, Villani F, Cherubini M, Aravanopoulos FA, Alizoti PG, Eriksson G, Botta R, Mellano MG (2005b) Geographic variability among extreme european wild chestnut populations. Acta Hort 693:181–186

    Google Scholar 

  • Fernández-López J, Miranda-Fontaíña ME, Furones-Pérez P (2008) Caracteres de selección en campo de clones de castaño híbrido (Castanea crenata × Castanea sativa) para producción de madera. Cuad Soc Esp Cienc For 24:39–43

    Google Scholar 

  • Field DL, Ayre DJ, Whelan RJ, Young AG (2009) Molecular and morphological evidence of natural interspecific hybridization between the uncommon Eucalyptus aggregata and the widespread E. rubida and E. viminalis. Conserv Genet 10:881–896

    Article  CAS  Google Scholar 

  • Gallástegui C (1926) Técnica de la hibridación artificial del castaño. Boletín de la Real Sociedad de Ciencias Naturales 26:88–94

    Google Scholar 

  • Graves AH (1949). Key to chestnut species with notes on some hybrids. NNGA, 40th Annual Report. pp 95–107

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 1:45–54

    Google Scholar 

  • Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veget Hist Archaeobot 13:145–160

    Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breed 11:127–136

    Article  CAS  Google Scholar 

  • Martín MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martín LM (2009) Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Ann Appl Biol 154:389–398

    Article  Google Scholar 

  • Martín MA, Mattioni C, Molina J, Alvarez J, Cherubini M, Herrera M, Villani F, Martín L (2011) Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet Genomes 8:127–136

    Article  Google Scholar 

  • Mellano MG, Beccaro GL, Donno D, Marinoni TD, Boccacci P, Canterino S, Cerutti AK, Bounous G (2012) Castanea spp. biodiversity conservation: collection and characterization of the genetic diversity of an endangered species. Genet Resour Crop Evol 1–15. http://dx.doi.org/10.1007/s10722-012-9794-x

  • MIMAM (2006) Estrategia de Conservación y uso sostenible de los recursos genéticos forestales. DGB, Madrid

    Google Scholar 

  • Miranda-Fontaíña ME, Fernández-López J (2001) Genotypic and environmental variation of Castanea crenata × C. sativa and Castanea sativa clones in aptitude to micropropagation. Silvae genet 50:153–162

    Google Scholar 

  • Miranda-Fontaíña ME, Fernández-López J, Vettraina AM, Vannini A (2007) Resistance of Castanea clones to Phytophthora cinnamomi: testing and genetic control. Silvae genet 56:11–21

    Google Scholar 

  • Nason JD, Ellstrand NC (1993) Estimating the frequencies of genetically distinct classes of individuals in hybridized populations. J Hered 84:1–12

    Google Scholar 

  • Nielsen E, Bach L, Kotlicki P (2006) Hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973

    Article  Google Scholar 

  • Pereira-Lorenzo S, Lourenço Costa RM, Ramos-Cabrer AM, Ciordia-Ara M, Marques Ribeiro CA, Borges O, Barreneche T (2011) Chestnut cultivar diversification process in the Iberian Peninsula, Canary Islands, and Azores. Genome 54:301–315

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 3.4)-a population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Robin C, Morel O, Vettraino AM, Perlerou C, Diamandis S, Vannini A (2006) Genetic variation in susceptibility to Phytophthora cambivora in European chestnut (Castanea sativa). For Ecol Manag 226:199–207

    Article  Google Scholar 

  • Rosenberg N, Jakobsson M (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  Google Scholar 

  • Sanz N, Araguas R, Fernández R, Vera M, García-Marín JL (2009) Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conserv Genet 10:225–236

    Article  CAS  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Urquijo-Landaluze P (1957) La regeneración del castaño. Boletín de Patología Vegetal y Entomología Agrícola 22:217–232

    Google Scholar 

  • Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the following research projects: “El origen evolutivo y caracterización del castaño europeo en la Galicia Atlántica-PGIDIT07PXIB502128PR” (IN.CI.TE. Xunta de Galicia) and “Estructura genética de las poblaciones de castaño (C. sativa Miller)-RTA2009-00163-00-00” (INIA. Ministerio de Ciencia e Innovación). We thank Paula Barreiro Filgueira for assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Cruz, J., Fernández-López, J. Morphological, molecular and statistical tools to identify Castanea species and their hybrids. Conserv Genet 13, 1589–1600 (2012). https://doi.org/10.1007/s10592-012-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0408-0

Keywords

Navigation