Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska

Abstract

Multiple species of large octopus are known from the north Pacific waters around Japan, however only one large species is known in the Gulf of Alaska (the giant Pacific octopus, Enteroctopus dofleini). Current taxonomy of E. dofleini is based on geographic and morphological characteristics, although with advances in genetic technology that is changing. Here, we used two mitochondrial genes (cytochrome b and cytochrome oxidase I), three nuclear genes (rhodopsin, octopine dehydrogenase, and paired-box 6), and 18 microsatellite loci for phylogeographic and phylogenetic analyses of octopuses collected from across southcentral and the eastern Aleutian Islands (Dutch Harbor), Alaska. Our results suggest the presence of a cryptic Enteroctopus species that is allied to, but distinguished from E. dofleini in Prince William Sound, Alaska. Existence of an undescribed and previously unrecognized taxon raises important questions about the taxonomy of octopus in southcentral Alaska waters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allcock AL, Strugnell J, Johnson MP (2008) How useful are the recommended counts and indices in the systematics of the octopodidae (Mollusca: Cephalopoda). Biol J Linn Soc 95:205–218

    Article  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Mol Biol 215:403–410

    CAS  Google Scholar 

  3. Barry P (2010) Examination of gear type efficacy, tagging methodology, and population structure for establishing a directed Enteroctopus dofleini fishery. MS thesis, School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks

    Google Scholar 

  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)

  5. Berry SS (1912) A review of the cephalopods of western North America. Bull Bur Fish 30(761):296–336

    Google Scholar 

  6. Bromham L, Woolfit M, Lee MSY, Rambaut A (2002) Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution 56:1921–1930

    Google Scholar 

  7. Cabranes C, Fernadez-Rueda P, Martinez JL (2008) Genetic structure of Octopus vulgaris around the Iberian peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J Mar Sci 65:12–16

    Article  Google Scholar 

  8. Corander J, Waldmann P, Marttinen P, Sillanpāā MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369

    PubMed  Article  CAS  Google Scholar 

  9. Davies TJ, Salvolainen V (2006) Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60:476–483

    PubMed  CAS  Google Scholar 

  10. Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103

    Article  CAS  Google Scholar 

  11. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, population divergence, and the variation in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    PubMed  CAS  Google Scholar 

  12. Erpenbeck D, Knowlton AL, Talbot SL, Highsmith RC, Van Soest RWM (2004) A molecular comparison of Alaskan and northeast Atlantic Halichondria panacea (Pallas 1766) (Porifera: Demospongiae) populations. Boll Mus Ist Univ Genova 68:319–325

    Google Scholar 

  13. Fluxus Technology Ltd (2004) Network 460. http://wwwfluxus-engineeringcom/sharenethtm. Accessed Dec 2011

  14. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selections. Genetics 147:915–925

    Google Scholar 

  15. Gleadall IG (1993) Identification of the long-ligula octopuses of Japan: a status report. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, Tokyo, pp 145–158

    Google Scholar 

  16. Griffiths A, Machado-Schiaffino G, Dillane E, Coughlan J, Horreo J, Bowkett A, Minting P, Toms S, Roche W, Gargan P, McGinnity P, Cross T, Bright D, Garcia-Vazquez E, Stevens J (2010) Genetic stock identification of Atlantic Salmon (Salmo salar) populations in the southern part of the European range. BMC Genetics 11:31

    Google Scholar 

  17. Hartwick B (1983) Octopus dofleini In: Boyle PR (ed) Cephalopod life cycles. Academic Press, London 1:157–200

    Google Scholar 

  18. Hartwick EB, Barriga I (1997) Octopus dofleini: biology and fisheries in Canada. In: Lang MA, Hochberg FG (eds) Proceedings of the workshop on the fishery and market potential of octopus in California. Smithsonian Institution, WA

    Google Scholar 

  19. Hartwick EB, Ambrose RF, Robinson SMC (1984) Den utilization and the movements of tagged Octopus dofleini. Mar Behav and Physiol 11:95–110

    Article  Google Scholar 

  20. Hebert PDN, Stoekle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. Public Libr Sci Biol 2:1657–1663

    CAS  Google Scholar 

  21. Hochberg FG (1998) Class cephalopoda In: Scott PV, Blake JA (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and the Western Santa Barbara channel, vol 8: the mollusca, Part 1. Santa Barbara Museum of Natural History, Santa Barbara, pp 175–236

  22. Hoffman JI, Dasmahapatra KK, Amos W, Phillips CD, Gelatt TS, Bickham JW (2009) Contrasting patterns of genetic diversity at three genetic markers in a marine mammal metapopulation. Mol Ecol 18:2961–2978

    PubMed  Article  CAS  Google Scholar 

  23. Humphries EM, Winker K (2010) Discord reigns among nuclear, mitochondrial and phenotypic estimates of divergence in nine lineages of trans-Beringian birds. Mol Ecol 20:573–583. doi:10.1111/j1365-294X.2010.04965.x

    PubMed  Article  Google Scholar 

  24. Jorgensen EM (2009) Field guide to squids and octopods of the eastern north Pacific and Bering Sea. Alaska Sea Grant, Fairbanks

    Google Scholar 

  25. Jorgensen EM, Strugnell JM, Allcock LA (2010) Description and phylogenetic relationships of a new genus of octopus, Sasakiopus (Cephalopoda: Octopodidae), from the Bering Sea, with a redescription of Sasakiopus salebrosus (Sasaki, 1920). J Molluscan Stud 76:57–66

    Article  Google Scholar 

  26. Kanamaru S, Yamashita Y (1969) The fisheries biology for the octopus, “mitzu-dako” (Paraoctopus hongkongensis (Hoyle)). (I) Summer movements in Onishika area of north-western part of Hokkaido. In: Investigation of the marine resources of Hokkaido and development of the fishing industry, Seattle, pp 1961–1965

  27. Kaneko N, Kubodera T, Iguchi A (2011) Taxonomic study of shallow-water octopuses (Chephalopda: Octopodidae) in Japan and adjacent waters using mitochondrial genes with perspectives on octopus DNA barcoding. Malacologia 54:97–108

    Article  Google Scholar 

  28. Keever CC, Sunday J, Puritz JB, Addison JA, Toonen RJ, Grosberg RK, Hart MW (2009) Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evoluion 63:3214–3227

    Article  Google Scholar 

  29. Kozloff EN (1996) Marine invertebrates of the Pacific. Northwest University of Washington Press, Seattle, p 539

    Google Scholar 

  30. Kubodera T (1991) Distribution and abundance of the early life stages of octopus, Octopus dofleini Wülker, 1910 in the North Pacific. Bull of Mar Sci 49:235–243

    Google Scholar 

  31. Langella O (1999) Populations 1.2.30 bioinformatics software. http://bioinformatics.org/~tryphon/populations/. Accessed 2011

  32. Mather J (1985) Mating behavior of Octopus joubini Robson. Veliger 21:265–267

    Google Scholar 

  33. McGovern TM, Keever CC, Saski CA, Hart MW, Marko PB (2010) Divergence genetics analysis reveals historical population genetic processes lading to contrasting phylogeographic patterns in co-distributed species. Mol Ecol 19:5043–5060

    PubMed  Article  Google Scholar 

  34. Mottet MG (1975) The fishery biology of Octopus dofleini (Wülker). Technical report no. 16. Management and Research Division Washington Department of Fisheries, p 39

  35. Muicy G, Solé-Cava A, Thorpe J, Boury-Esnault N (1996) Genetic evidence for extensive cryptic speciation in the subtidal sponge Plankina trilopha (Porifera: Demospongiae: Homoscleromorpha) from the western Mediterranean. Mar Ecol Prog Ser 138:181–187

    Article  Google Scholar 

  36. Nesis KN (1982) Cephalopods of the world: squids, cuttlefishes, octopuses and allies. TFH Publications, Inc. Ltd., Neptune City

    Google Scholar 

  37. Nixon M (1998) Overview of cephalopod characters systematics and biogeography of cephalopods. In: Voss NA, Vecchione M, Toll RB, Sweeney MH (eds) Systematics and biogeography of cephalopods, vol I. Smithsonian Institution Press, Washington, DC, pp 7–9

    Google Scholar 

  38. Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458

    PubMed  Article  CAS  Google Scholar 

  39. Page RDM (2001) Tree View[Wing32] http://taxonomyzoologyglaacuk/rod/rodhtml

  40. Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT, Barraclough TG, Vogler AP (2008) Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Phil Trans Roy Soc Lond B Biol Sci 363:2987–2996

    Article  Google Scholar 

  41. Park SDE (2001) Trypanotolerance in west African cattle and the population genetic effects of selection. PhD thesis, University of Dublin

  42. Pickford GE (1964) Octopus dofleini (Wülker), the giant octopus of the North Pacific. Bull Bingham Oceanogr Collect 19:1–70

    Google Scholar 

  43. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    PubMed  Article  CAS  Google Scholar 

  44. Raymond M, Rousset F (1995) GENEPOP (Version 12): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  45. Reuter RF, Connors ME, Ducisumo J, Gaichas S, Ormseth O, Tenbrink T (2010) Managing non-target data-poor species using catch limits: lessons from the Alaskan groundfish fishery. Fish Manage Ecol 17:1–13

    Article  Google Scholar 

  46. Rigby PR (2004) Ecology of immature octopus Enteroctopus dofleini: growth, movement and behavior (dissertation). Hokkaido University, Hokkaido

    Google Scholar 

  47. Sala-Bozano M, Ketmaier V, Mariani S (2009) Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol Ecol 18:4811–4826

    PubMed  Article  CAS  Google Scholar 

  48. Scheel D (2002) Characteristics of habitats used by Enteroctopus dofleini in Prince William Sound and Cook Inlet, Alaska. PSZN Mar Ecol 41:185–206

    Article  Google Scholar 

  49. Scheel D, Bisson L (2012) Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wülker, 1910). J Exp Mar Biol Ecol 416–417:21–31

    Article  Google Scholar 

  50. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: a software for population genetics analysis

  51. Söller R, Warnke K, Saint-Paul U, Blohm D (2000) Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda: Octopodidae). Mar Bio 136:29–35

    Article  Google Scholar 

  52. Sosa IAB, Beckenbach K, Hartwick B, Smith MJ (1995) The molecular phylogeny of five eastern North Pacific octopus species. Mol Phylo and Evol 4:163–174

    Article  Google Scholar 

  53. Stewart NC Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–749

    PubMed  CAS  Google Scholar 

  54. Strugnell JM, Lindgren AR (2007) A barcode of life database for the Cephalopoda considerations and concerns. Rev Fish Biol Fish 17:334–337

    Article  Google Scholar 

  55. Strugnell JM, Norman M, Drummind AJ, Cooper A (2004) Neotenous origins for pelagic octopuses. Curr Biol 14:R300–R301

    PubMed  Article  CAS  Google Scholar 

  56. Swofford D (2003) PAUP*: phylogenetic analysis using parsimony and other methods (software) Sinauer Associates, Sunderland

  57. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    Google Scholar 

  58. Takumiya M, Koayashi M, Tsuneki K, Furuya H (2005) Phylogenetic relationships among major species of Japanese coleoid cephalopods (Mollusca: Cephalopoda) using three mitochondrial DNA sequences. Zool Sci 22:155–167

    Article  Google Scholar 

  59. Tamura K, Peterson D, Peterson N, Strecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio and Evol 28:2731–2739

    Article  CAS  Google Scholar 

  60. Terry A, Bucciarelli G, Bernardi G (2001) Restricted gene flow and incipient speciation in the disjunct Pacific Ocean and Sea of Cortez populations of a reef fish species, Girella nigricans. Evolution 54:652–659

    Google Scholar 

  61. Teske PR, Oosthuizen A, Papadopoulos I, Barker NP (2007) Phylogeographic structure of Octopus vulgaris in South Africa revisited: identification of a second lineage near Durban Harbour. Mar Bio 151:2119–2122

    Article  Google Scholar 

  62. Toussaint RK, Sage GK, Talbot SL, Scheel D (2011) Microsatellite marker isolation and development for the giant Pacific octopus (Enteroctopus dofleini). Con Gen Res. doi:10.1007/s12686-011-9588-z

    Google Scholar 

  63. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968

    Article  CAS  Google Scholar 

  64. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2212

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sarah Sonsthagen and C. Roman Dial for laboratory and analytical assistance, also Gordon Scott, Reid Brewer, Robert Berceli, and Elisa Russ for obtaining samples. Also, thanks to Henry Tomingas for sampling equipment and boat use, Christy Beaty for GIS mapping, Meg Fowler for help with figures, and John Pearce and two anonymous reviewers for providing valuable comments on earlier versions of the manuscript. We acknowledge the late P. R. Rigby for inspiring this study. Thanks to Richard, Susan, and Kathryn Toussaint, Paul Kelly, Jennifer Wehrmann, Roman J. Dial, and many others for their support and collaboration with this project. Funds for this research were provided by the Pollock Conservation Cooperative through Alaska Pacific University, the Alaska Space Grant Program, Jacobs Engineering, U.S. Geological Survey Alaska Science Center, and Alaska Pacific University. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. Toussaint.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toussaint, R.K., Scheel, D., Sage, G.K. et al. Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska. Conserv Genet 13, 1483–1497 (2012). https://doi.org/10.1007/s10592-012-0392-4

Download citation

Keywords

  • Enteroctopus dofleini
  • Phylogeographic
  • Phylogenetic
  • Microsatellite
  • Mitochondrial