Skip to main content

Anthropogenic influences on the spatial genetic structure of black bears

Abstract

Anthropogenic influences such as hunting pressure and habitat fragmentation can alter the demographic and spatial patterns of wildlife populations. Understanding the consequences of these impacts is a challenge for natural resource managers, which can be overcome by investigations using spatial genetic techniques. We used spatial autocorrelation and landscape genetic analyses to compare the impacts of anthropogenic forces on the spatial genetic structure of two female black bear (Ursus americanus) populations in northern New Hampshire with similar bear densities but varying human densities, hunting pressure and sex ratios. We found evidence of an impact of hunting mortality on the spatial genetic structure of female black bears. The population with greater hunting pressure and a heavily male-biased sex ratio (Milan) exhibited greater spatial genetic structure represented by a pattern of isolation by distance, kin clustering, and reduced dispersal in comparison to the population with a balanced sex ratio (Pittsburg). We did not find a strong effect of fragmenting landscape features on female spatial structure. Major roads were correlated with spatial genetic structure, but only in the population with lower human density and development (Pittsburg). Slope and elevation were also correlated with spatial genetic structure, suggesting terrain plays a role in structuring seasonal female home range boundaries. Our study revealed the utility of using spatial genetic techniques to identify anthropogenic influences on female social organization. These findings highlight the importance of monitoring the impacts of harvest pressure not only on demographics but also the spatial genetic structure of animal populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allendorf FW, England PR, Luikart G et al (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337. doi:10.1016/j.tree.2008.02.008

    PubMed  Article  Google Scholar 

  • Aune KE (1994) Comparative ecology of black and grizzly bears on the Rocky Mountain front, Montana. Bears Biol Manag 9:365–374. doi:10.2307/3872723

    Article  Google Scholar 

  • Banks SC, Lindenmayer DB, Ward SJ, Taylor AC (2005) The effects of habitat fragmentation via forestry plantation establishment on spatial genotypic structure in the small marsupial carnivore, Antechinus agilis. Mol Ecol 14:1667–1680. doi:10.1111/j.1365-294X.2005.02525.x

    PubMed  Article  CAS  Google Scholar 

  • Banks SC, Piggott MP, Stow AJ, Taylor AC (2007) Sex and sociality in a disconnected world: a review of the impacts of habitat fragmentation on animal social interactions. Can J Zool 85:1065–1079

    Article  Google Scholar 

  • Beeman LE, Pelton MR (1980) Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Bears Biol Manag 4:141–147. doi:10.2307/3872858

    Article  Google Scholar 

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522. doi:10.1111/j.1471-8286.2004.00711.x

    Article  CAS  Google Scholar 

  • Beringer JJ, Seibert SG, Pelton MR (1990) Incidence of road crossing by black bears on Pisgah National Forest, North Carolina. Bears Biol Manag 8:85–92. doi:10.2307/3872906

    Article  Google Scholar 

  • Brody AJ, Pelton MR (1989) Effects of roads on black bear movements in western North Carolina. Wildl Soc Bull 17:5–10

    Google Scholar 

  • Broquet T, Ray N, Petit E et al (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landsc Ecol 21:877–889

    Article  Google Scholar 

  • Bunnell FL, Tait DEN (1980) Bears in models and in reality: implications to management. Bears Biol Manag 4:15–23. doi:10.2307/3872837

    Article  Google Scholar 

  • Busch JD, Waser PM, DeWoody JA (2009) The influence of density and sex on patterns of fine-scale genetic structure. Evolution 63:2302–2314. doi:10.1111/j.1558-5646.2009.00721.x

    PubMed  Article  Google Scholar 

  • Cabin RJ, Mitchell RJ (2000) To Bonferroni or not to Bonferroni: when and how are the questions. Bull Ecol Soc Am 81:246–248

    Google Scholar 

  • Coltman DW (2008) Molecular ecological approaches to studying the evolutionary impact of selective harvesting in wildlife. Mol Ecol 17:221–235

    PubMed  Article  Google Scholar 

  • Coltman DW, O’Donoghue P, Jorgenson JT et al (2003) Undesirable evolutionary consequences of trophy hunting. Nature 426:655–658. doi:10.1038/nature02177

    PubMed  Article  CAS  Google Scholar 

  • Coster SS, Kovach AI, Pekins PJ et al (2011) Genetic mark–recapture population estimation in black bears and issues of scale. J Wildl Manag 75:1128–1136. doi:10.1002/jwmg.143

    Article  Google Scholar 

  • Diniz-Filho JAF, De Campos Telles MP (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv Biol 16:924–935

    Article  Google Scholar 

  • Dixon JD, Oli MK, Wooten MC et al (2006) Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv Genet 8:455–464. doi:10.1007/s10592-006-9184-z

    Article  Google Scholar 

  • Double MC, Peakall R, Beck NR, Cockburn A (2005) Dispersal, philopatry, and infidelity: dissecting local genetic structure in superb fairy-wrens (Malurs cyaneus). Evolution 59:625–635. doi:10.1111/j.0014-3820.2005.tb01021.x

    PubMed  CAS  Google Scholar 

  • Dutilleul P, Stockwell JD, Frigon D, Legendre P (2000) The Mantel test versus Pearson’s correlation analysis: assessment of the differences for biological and environmental studies. J Agric Biol Environ Stat 5:131–150. doi:10.2307/1400528

    Article  Google Scholar 

  • Festa-Bianchet M (2003) Exploitative wildlife management as a selective pressure for life-history evolution of large mammals. In: Festa-Bianchet M, Apollonio M (eds) Animal behavior and wildlife conservation. Island Press, Washington, DC, pp 191–207

    Google Scholar 

  • Frantz AC, Hamann J-L, Klein F (2008) Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur J Wildl Res 54:44–52. doi:10.1007/s10344-007-0107-1

    Article  Google Scholar 

  • Gibeau ML, Herrero S (1998) Roads, rails and grizzly bears in the Bow River Valley, Alberta. In: International conference on wildlife ecology and transportation

  • Gibeau ML, Clevenger AP, Herrero S, Wierzchowski J (2002) Grizzly bear response to human development and activities in the Bow River Watershed, Alberta, Canada. Biol Conserv 103:227–236. doi:10.1016/S0006-3207(01)00131-8

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harris RB, Wall WA, Allendorf FW (2002) Genetic consequences of hunting: what do we know and what should we do? Wildl Soc Bull 30:634–643

    Google Scholar 

  • Hellgren EC, Vaughan MR, Stauffer F (1991) Macrohabitat use by black bears in a southeastern wetland. J Wildl Manag 55:442–448. doi:10.2307/3808972

    Article  Google Scholar 

  • Hristienko H, McDonald JE (2007) Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18:72–88. doi:10.2192/1537-6176(2007)18[72:GITSCA]2.0.CO;2

    Article  Google Scholar 

  • Jaquiery J, Broquet T, Hirzel AH et al (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705. doi:10.1111/j.1365-294X.2010.04966.x

    PubMed  Article  CAS  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Kolenosky GB (1986) The effects of hunting on an Ontario black bear population. Bears Biol Manag 6:45–55. doi:10.2307/3872805

    Article  Google Scholar 

  • Lee-Yaw JA, Davidson A, McRae BH, Green DM (2009) Do landscape processes predict phylogeographic patterns in the wood frog? Mol Ecol 18:1863–1874

    PubMed  Article  Google Scholar 

  • Legendre P, Fortin M (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844. doi:10.1111/j.1755-0998.2010.02866.x

    PubMed  Article  Google Scholar 

  • Litvaitis JA, Kane DM (1994) Relationship of hunting technique and hunter selectivity to composition of black bear harvest. Wildl Soc Bull 22:604–606

    Google Scholar 

  • Malcolm KD, Van Deelen TR (2010) Effects of habitat and hunting framework on American black bear harvest structure in Wisconsin. Ursus 21:14–22. doi:10.2192/08GR035.1

    Article  Google Scholar 

  • Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28:403–416. doi:10.1111/j.0906-7590.2005.04073.x

    Article  Google Scholar 

  • McLoughlin PD, Taylor MK, Messier F (2005) Conservation risks of male-selective harvest for mammals with low reproductive potential. J Wildl Manag 69:1592–1600. doi:10.2193/0022-541X(2005)69[1592:CROMHF]2.0.CO;2

    Article  Google Scholar 

  • Millions DG, Swanson BJ (2007) Impact of natural and artificial barriers to dispersal on the population structure of bobcats. J Wildl Manag 71:96–102. doi:10.2193/2005-563

    Article  Google Scholar 

  • Milner J, Nilsen EB, Andreassen HP (2007) Demographic side effects of selective hunting in ungulates and carnivores. Conserv Biol 21:36–47

    PubMed  Article  Google Scholar 

  • Milner-Gulland EJ, Bukreeva OM, Coulson T et al (2003) Reproductive collapse in saiga antelope harems. Nature 422:135

    PubMed  Article  CAS  Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405. doi:10.1034/j.1600-0706.2003.12010.x

    Article  Google Scholar 

  • Moyer MA, McCown JW, Eason TH, Oli MK (2006) Does genetic relatedness influence space use pattern? A test on Florida black bears. J Mammal 87:255–261. doi:10.1644/05-MAMM-A-192R1.1

    Article  Google Scholar 

  • New Hampshire Fish and Game Department (2000–2005) New Hampshire wildlife harvest summary. http://www.wildlife.state.nh.us/Hunting/harvest_summary/index.html

  • New Hampshire GRANIT (2001) New Hampshire land cover assessment. New Hampshire GRANIT, Durham. http://www.granit.unh.edu

  • Noss RF, Quigley HB, Hornocker MG et al (1996) Conservation biology and carnivore conservation in the Rocky Mountains. Conserv Biol 10:949–963

    Article  Google Scholar 

  • Nussey DH, Coltman DW, Coulson T et al (2005) Rapidly declining fine-scale spatial genetic structure in female red deer. Mol Ecol 14:3395–3405. doi:10.1111/j.1365-294X.2005.02692.x

    PubMed  Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2010) Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in C€anadian polar bears. Mol Ecol 4:347–354

    PubMed  Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2005) Appendix 2—spatial autocorrelation in GenAlEx 6. http://www.anu.edu.au/BoZo/GenAlEx/

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the australian bush rat, Rattus fuscipes. Evolution 57:1182–1195. doi:10.1111/j.0014-3820.2003.tb00327.x

    PubMed  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238. doi:10.1136/bmj.316.7139.1236

    PubMed  Article  CAS  Google Scholar 

  • Powell RA, Zimmerman JW, Seaman DE (1997) Ecology and behaviour of North American black bears: home ranges, habitat, and social organization. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Proctor MF, McLellan BN, Strobeck C, Barclay RM (2005) Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc R Soc B Biol Sci 272:2409–2416. doi:10.1098/rspb.2005.3246

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. Retrieved from http://www.R-project.org

  • Ray N (2005) Pathmatrix: a geographical information system tool to compute effective distances among samples. Mol Ecol Notes 5:177–180

    Article  Google Scholar 

  • Reynolds-Hogland MJ, Mitchell MS (2007) Effects of roads on habitat quality for bears in the southern Appalachians: a long-term study. J Mammal 88:1050–1061. doi:10.1644/06-MAMM-A-072R1.1

    Article  Google Scholar 

  • Riley S, Pollinger JP, Sauvajot RM et al (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    PubMed  Article  CAS  Google Scholar 

  • Rogers LL (1977) Social relationships, movements, and population dynamics of black bears in Northeastern Minnesota. Ph.D. dissertation, University of Minnesota

  • Rogers LL (1987) Factors influencing dispersal. In: Chepko-Sade BD, Halpin ZT (eds) Mammalian dispersal patterns: the effects of social structure on population genetics. University of Chicago Press, Chicago, pp 75–84

    Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Sæther B-E, Solberg EJ, Heim M (2003) Effects of altering sex ratio structure on the demography of an isolated moose population. J Wildl Manag 67:455–466. doi:10.2307/3802703

    Article  Google Scholar 

  • Scribner KT, Blanchong JA, Bruggeman DJ et al (2005) Geographical genetics: conceptual foundations and empirical applications of spatial genetic data in wildlife management. J Wildl Manag 69:1434–1453

    Article  Google Scholar 

  • Servanty S, Gaillard J-M, Ronchi F et al (2011) Influence of harvesting pressure on demographic tactics: implications for wildlife management. J Appl Ecol 48:835–843. doi:10.1111/j.1365-2664.2011.02017.x

    Article  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA et al (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    PubMed  Article  CAS  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    PubMed  Article  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400. doi:10.1111/j.1365-294X.2008.03839.x

    PubMed  Article  Google Scholar 

  • Solmsen N, Johannesen J, Schradin C (2011) Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol Ecol 20:1624–1634. doi:10.1111/j.1365-294X.2011.05042.x

    PubMed  Article  CAS  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ et al (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    PubMed  Article  Google Scholar 

  • Stow AJ, Sunnucks P, Briscoe DA, Gardner MG (2001) The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Mol Ecol 10:867–878. doi:10.1046/j.1365-294X.2001.01253.x

    PubMed  Article  CAS  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    PubMed  Article  CAS  Google Scholar 

  • Walker FM, Sunnucks P, Taylor AC (2008) Evidence for habitat fragmentation altering within-population processes in wombats. Mol Ecol 17:1674–1684. doi:10.1111/j.1365-294X.2008.03701.x

    PubMed  Article  Google Scholar 

  • Waser PM, Jones WT (1983) Natal philopatry among solitary mammals. Q Rev Biol 58:355–390

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to funding by the New Hampshire Fish and Game Department and the University of New Hampshire. E. Willey, M. Linehan, M. Hess, H. Brieg, and W. Smith assisted with DNA extraction. We thank the Hubbard Genome Center and J. Anderson for their assistance with fragment analysis, D. Berlinsky for generous use of laboratory facilities, and the Kovach and Babbitt labs in addition to two anonymous reviewers for providing comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne I. Kovach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coster, S.S., Kovach, A.I. Anthropogenic influences on the spatial genetic structure of black bears. Conserv Genet 13, 1247–1257 (2012). https://doi.org/10.1007/s10592-012-0368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0368-4

Keywords

  • Fragmentation
  • Hunting pressure
  • Landscape genetics
  • Sex ratio
  • Spatial genetic structure
  • Ursus americanus