Skip to main content

River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead (Cottus gobio)

Abstract

Man-made habitat fragmentation is a major concern in river ecology and is expected to have particularly detrimental effects on aquatic species with limited dispersal abilities, like the bullhead (Cottus gobio). We used ten microsatellite markers to investigate small-scale patterns of gene flow, current dispersal and neutral genetic diversity in a morphologically diverse river where fragmented and unfragmented sections could be compared. We found high genetic differentiation between sampling sites with a maximum F ST of 0.32 between sites separated by only 35 km. A significant increase of genetic differentiation with geographical distance was observed in the continuous river section as well as in the full dataset which included headwater populations isolated by anthropogenic barriers. Several lines of evidence are consistent with the hypothesis that such barriers completely block upstream movement while downstream dispersal may be little affected. In the unfragmented habitat, dispersal rates were also higher in the direction of water flow than against it. The resulting asymmetry in gene flow likely contributes to the decrease of genetic variation observed from the lower reaches towards the headwaters, which is particularly pronounced in physically isolated populations. Our findings suggest that headwater populations, due to their isolation and low genetic variation, may be particularly vulnerable to extinction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adamicka P (1979) Zwei Vorurteile über die Schädlichkeit von Koppen und Kaulquappen. Österreichs Fischerei 32:162–164

    Google Scholar 

  • Adamicka P (1984) Neues vom ‘argen Laichräuber’ (Cottus gobio). Österreichs Fischerei 31:334–336

    Google Scholar 

  • Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program Structure. Mol Ecol Resour 8:1219–1229

    PubMed  Article  CAS  Google Scholar 

  • Andreasson S (1971) Feeding habits of a sculpin (Cottus gobio L. Pisces) population. Report of the institute of freshwater research, Drottningholm, Sweden, 51: 5–30

  • Barandun J (1990) Auswirkungen von ausbreitungsobstruktionen auf das Vorkommen von Groppen (Cottus gobio) — Anregungen für den Artenschutz. Natur und Landschaft 65:66–68

    Google Scholar 

  • Bisazza A, Marconato A (1988) Female mate choice, male–male competition and parental care in the river bullhead, Cottus gobio L. (Pisces, Cottidae). Anim Behav 36:1352–1360

    Article  Google Scholar 

  • Bless R (1981) Untersuchungen zum Einfluss von gewässerbaulichen Massnahmen auf die Fischfauna in Mittelgebirgsbächen. Natur und Landschaft 56:243–252

    Google Scholar 

  • Bless R (1990) Die Bedeutung von gewässerbaulichen Hindernissen im Raum-Zeit-System der Groppe (Cottus gobio L.). Natur und Landschaft 65:581–585

    Google Scholar 

  • Bucher F, Hofer R, Salvenmoser W (1992) Effects of treated paper mill effluents on hepatic morphology in male bullhead (Cottus gobio L.). Arch Environ Contam Toxicol 23:410–419

    Article  CAS  Google Scholar 

  • Caldera EJ, Bolnick DI (2008) Effects of colonization history and landscape structure on genetic variation within and among threespine stickleback (Gasterosteus aculeatus) populations in a single watershed. Evol Ecol Res 10:575–598

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  Google Scholar 

  • Downhower JF, Lejeune P, Gaudin P, Brown L (1990) Movements of the chabot (Cottus gobio) in a small stream. Polskie Archiwum Hydrobiologii 37:119–126

    Google Scholar 

  • Elliot JM (1981) Some aspects of thermal tolerance of freshwater teleosts. In: Pickering AD (ed) Stress and fish. Academic Press, UK, pp 209–245

    Google Scholar 

  • Englbrecht CC, Largiadèr CR, Hänfling B, Tautz D (1999) Isolation and characterization of polymorphic microsatellite loci in the European bullhead Cottus gobio L. (Osteichthyes) and their applicability to related taxa. Mol Ecol 8:1966–1969

    PubMed  Article  CAS  Google Scholar 

  • Englbrecht CC, Freyhof J, Nolte A, Rassmann K, Schliewen U, Tautz D (2000) Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei: Cottidae) suggests a pre-pleistocene origin of the major central European populations. Mol Ecol 9:709–722

    PubMed  Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1:47–50

    CAS  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Ann Rev Eco Evol Syst 40:481–501

    Article  Google Scholar 

  • Faubet P, Waples RS, Gaggotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    PubMed  Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle

  • Frankel OH, Soule M (1981) Conservation and Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Gädtgens A (1989) Die Rolle der Groppe (Cottus gobio L.) als Konsument des Zoobenthos im Ökosystem eines Mittelgebirgs-baches (Steine/Schwarzwald). Diplomarbeit. Fakultät für Biologie der Universität Konstanz 62

  • Gaudin P (1985) Predation Exercée par le Chabot (Cottus gobio L.) sur I’Alevin de Truite Commune (Salmo trutta l.): taille maximale de capture des alevins par les chabots. Hydrobiologia 122:267–270

    Article  Google Scholar 

  • Gaudin P, Caillere L (1990) Microdistribution of Cottus gobio L. and fry of Salmotrutta in a first order stream. Pol Arch Hydrobiol 37:81–93

    Google Scholar 

  • Gaudin P, Heland M (1984) Influenced‘Adultes de Chabots (Cottus gobio L.) sur des Alevins de TruiteCommune (SalmotruttaL.): etude experimentale en milieux semi-naturels. Aria Oecol 5:71–83

    Google Scholar 

  • Goldmann K (1993) Einfluss von Querbauwerken in einem voralpinen Fliessgewässer auf die Fischpopulationen. Diplomarbeit, Albert-Ludwigs-Universität Freiburg im Breisgau, Fakultät für Biologie

    Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Goudet J (1995) Fstat (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hänfling B, Weetman D (2006) Concordant genetic estimators of migration reveal anthropogenically enhanced source-sink population structure in the river sculpin Cottus gobio. Genetics 173:1487–1501

    PubMed  Article  Google Scholar 

  • Hänfling B, Hellemans B, Volckaert FAM, Carvalho GR (2002) Late glacial history of the cold-adapted freshwater fish Cottus gobio, revealed by microsatellites. Mol Ecol 11:1717–1729

    PubMed  Article  Google Scholar 

  • Hansen MM, Nielsen EE, Mensberg KLD (1997) The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L. Mol Ecol 6:469–474

    Article  CAS  Google Scholar 

  • Hofer R, Bucher F (1991) Zur Biologie und Gefährdung der Koppe. Österreichs Fischerei 44:158–161

    Google Scholar 

  • Jones OR, Wang J (2010) Colony: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    PubMed  Article  Google Scholar 

  • Jungwirth M (1996) Bypass channels at weirs as appropriate aids for fish migration in lithoral rivers. Regul Rivers: Res Manag 12:483–492

    Article  Google Scholar 

  • Kellander M, Riley M, Liu CS (2002) GeneMarker® Software for Multiplex Ligation-dependent Probe Amplification (MLPA)

  • Keller I, Nentwig W, Largiadèr CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994

    PubMed  Article  CAS  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Knaepkens G, Knapen D, Bervoets L, Hänfling B, Verheyen E, Eens M (2002) Genetic diversity and condition factor: a significant relationship in Flemish but not in German populations of the European bullhead (Cottus gobio L.). Heredity 89:280–287

    PubMed  Article  CAS  Google Scholar 

  • Knaepkens G, Bruyndoncx L, Eens M (2004a) Assessment of residency and movement of the endangered bullhead (Cottus gobio) in two Flemish rivers. Ecol Freshw Fish 13:317–322

    Article  Google Scholar 

  • Knaepkens G, Bruyndoncx L, Coeck J, Eens M (2004b) Spawning habitat enhancement in the European bullhead (Cottus gobio), an endangered freshwater fish in degraded lowland rivers. Biodivers Conserv 13:2443–2452

    Article  Google Scholar 

  • Letcher BH, Nislow KH, Coombs JA, O’Donnell MJ, Dubreuil TL (2007) Population response to habitat fragmentation in a stream-dwelling brook trout population. PLoS ONE 2(11):e1139

    PubMed  Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Meldgaard T, Nielsen EE, Loeschcke V (2003) Fragmentation by Weirs in a Riverine system: a study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conserv Genet 4:735–747

    Article  CAS  Google Scholar 

  • Müller K (1954) Investigations on the organic drift in North Swedish streams. Inst Freshw Res Rep 34:133–149

    Google Scholar 

  • Nolte AW, Freyhof J, Stemshorn KC, Tautz D (2005a) An invasive lineage of sculpins, Cottus sp (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc Royal Soc B 272:2379–2387

    Article  Google Scholar 

  • Nolte AW, Stemshorn KC, Tautz D (2005b) Direct cloning of microsatellite loci from Cottus gobio through a simplified enrichment procedure. Mol Ecol Notes 5:628–636

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peterka J, Vašek M, Kubečka J, Hladík M, Hohausová E (2004) Drift of juveniles after riverine spawning of fishes from the Římov reservoir, Czech Republic. Ecohydrol Hydrobiol 4(4):459–468

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raeymaekers JAM, Raeymaekers D, Koizumi I, Geldof S, Volckaert FAM (2009) Guidelines for restoring connectivity around water mills: a population genetic approach to the management of riverine fish. J Appl Ecol 46:562–571

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. http://www.R-project.org

  • Rosenzweig ML (2001) Loss of speciation rate will impoverish future diversity. Proc Natl Acad Sci USA 98(10):5404–5410

    PubMed  Article  CAS  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Sala OE, Stuart Chapin III F, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    PubMed  Article  CAS  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Smyly WJP (1957) The life-history of the bullhead or miller’s thumb (Cottus gobio L.). Proc Zool Soc Lond 128:431–453

    Google Scholar 

  • Späh H, Beisenherz W (1984) Beitrag zur Ökologie und Verbreitung der Groppe (Cottus gobio, Pisces) in Ostwestfalen und in Osnabrück (Niedersachsen). Verh Ges Ökologie 12:617–626

    Google Scholar 

  • Starmach J (1965) Koppen in den Karpathenflüssen: II. Auftreten und Charakteristik der Buntflossenkoppe (Cottus poecilopus Heckel) und Weissflossigen Koppe (Cottus gobio L.) in Raba Flussgebiet. Acta Hydrobiol 7:109–140

    Google Scholar 

  • Tudorache C, Viaene P, Blust R, Vereecken H, De Boeck G (2008) A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol Freshw Fish 17:284–291

    Article  Google Scholar 

  • Utzinger J, Roth C, Peter A (1998) Effects of environmental parameters on the distribution of bullhead Cottus gobio with particular consideration of the effects of obstructions. J Appl Ecol 35:882–892

    Article  Google Scholar 

  • Vonlanthen P, Excoffier L, Bittner D, Persat H, Neuenschwander S, Largiader CR (2007) Genetic analysis of potential postglacial watershed crossings in Central Europe by the bullhead (Cottus gobio L.). Mol Ecol 16:4572–4584

    PubMed  Article  CAS  Google Scholar 

  • Waters TF (1972) Drift of stream insects. Annu Rev Entomol 17:253–272

    Article  Google Scholar 

  • Waterstraat A (1992) Investigations on the ecology of Cottus gobio L. and other fish species from two lowland streams of Northern Germany. Limnologica 22:137–149

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williams BL, Brawn JD, Page KN (2003) Landscape Scale genetic effects of habitat fragmentation on a high gene flow species: Speyeriaidalia (Nymphalidae). Mol Ecol 12:11–20

    PubMed  Article  CAS  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  • Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conserv Genet 5:529–538

    Article  CAS  Google Scholar 

  • Zaugg B, Stucki P, Pedroli JC, Kirchhofer A (2003) Pisces Atlas. Fauna Helvetica 7

  • Zeh Weissmann H, Könitzer C, Bertiller A (2009) Strukturen der Fliessgewässer in der Schweiz. Zustand von Sohle, Ufer und Umland (Ökomorphologie); Ergebnisse der Ökomorphologi-schen Kartierung. Stand: April 2009. Umwelt-Zustand Nr. 0926

Download references

Acknowledgments

Special thanks go to Christina Riedl, Laura Langeloh and Reto Haas for their valuable help during fieldwork. We thank the local fisheries authorities of Bern and Fribourg for their support of this project. We are also grateful to the members of the River Management project and special thanks go to all the people at Fishec, who have always been very supportive. We would also like to thank E. E. Nielsen and three anonymous reviewers for their valuable input. This project was financially supported by EAWAG through an action field grant to AP and IK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Junker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Junker, J., Peter, A., Wagner, C.E. et al. River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead (Cottus gobio). Conserv Genet 13, 545–556 (2012). https://doi.org/10.1007/s10592-011-0306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0306-x

Keywords

  • Fragmentation
  • Microsatellites
  • Bullhead
  • Cottus gobio
  • Population genetic structure
  • Conservation