Species designation of the Bruneau Dune tiger beetle (Cicindela waynei) is supported by phylogenetic analysis of mitochondrial DNA sequence data

Abstract

Beetles comprise nearly one quarter of described species and show high levels of morphological and ecological diversification. Because of their wide distribution, ease of detection, and correlation of species richness patterns with other taxa, tiger beetles have been recommended for use as a global indicator of regional biodiversity, requiring accurate taxonomic designations. The Bruneau Dune tiger beetle (Cicindela waynei), whose habitat consists of an isolated dune field in southern Idaho, was recently described as a distinct species from the St. Anthony Dunes tiger beetle (C. arenicola) based on morphological characteristics. While these characteristics include distinct differences in genital morphology that could indicate intrinsic reproductive isolation, morphological characteristics have sometimes been misleading in tiger beetle taxonomy. To evaluate genetic support for this species designation, we analyzed 1,751 base pairs of mitochondrial DNA sequence from 147 tiger beetles collected throughout the range of both C. arenicola and C. waynei. Maximum-likelihood and Bayesian phylogenetic analyses indicated monophyly for C. waynei on a well-supported, short branch nested within C. arenicola. Bayesian species delimitation analyses strongly supported C. waynei as a distinct species (speciation probability = 1.0) with the estimated time of divergence ca. 14,500–67,000 years ago. This lack of reciprocal monophyly and recency of speciation is consistent with C. waynei as a member of an evolutionary front where speciation has occurred at a rapid rate. Mitochondrial sequence data supports the species designation of C. waynei, emphasizing the need to determine appropriate management for this species and its restricted habitat.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barraclough TG, Vogler AP (2002) Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Mol Biol Evol 19:1706–1716

    PubMed  Article  CAS  Google Scholar 

  2. Barraclough TG, Hogan JE, Vogler AP (1999) Testing whether ecological factors promote cladogenesis in a group of tiger beetles (Coleoptera: Cicindelidae). Proc Royal Soc Lond B 266:1061–1067

    Article  Google Scholar 

  3. Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA Evolution. Proc Natl Acad Sci USA 91:6491–6495

    PubMed  Article  CAS  Google Scholar 

  4. Busacca AJ, Begét JE, Markewich HW, Muhs DR, Lancaster N, Sweeney M (2004) Eolian sediments. In: Gillespie AR, Porter SC, Atwater BF (eds) The quaternary period in the United States. Elsevier, Amsterdam, pp 275–309

    Google Scholar 

  5. Cassola F, Pearson DL (2000) Global patterns of tiger beetle species richness (Coleoptera: Cicindelidae): their use in conservation planning. Biol Conserv 95:197–208

    Article  Google Scholar 

  6. Crozier YC, Koulianos S, Crozier RH (1991) An improved test for Africanized honeybee mitochondrial DNA. Experientia 47:968–969

    PubMed  Article  CAS  Google Scholar 

  7. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    PubMed  Article  Google Scholar 

  8. Erwin TL (1991) An evolutionary basis for conservation strategies. Science 253:750–752

    PubMed  Article  CAS  Google Scholar 

  9. Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, St. John O, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a super radiation. Science 318:1913–1916

    PubMed  Article  CAS  Google Scholar 

  10. Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458

    PubMed  Article  CAS  Google Scholar 

  11. Leaché AD, Fujita MK (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). P R Soc B 277:3071–3077

    Article  Google Scholar 

  12. Leffler S (2001) A new species of tiger beetle from southwestern Idaho (Coleoptera: Cicindelidae). Cicindela 33:19–40

    Google Scholar 

  13. Liebherr JK, McHugh JV (2003) Coleoptera. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, Amsterdam, pp 209–229

    Google Scholar 

  14. Logan DR (1995) Idaho dune tiger beetle survey, Cicindela arenicola Rumpp. Tech Bull 95–17, Idaho Bureau of Land Management, Boise

  15. Malde HE (1991) Quaternary geology and structural history of the Snake River Plain, Idaho and Oregon. In: Morrison RB (ed) Quaternary nonglacial geology: conterminous U.S. The geology of North America V. K-2. Geological Society of America, Boulder

    Google Scholar 

  16. Morgan M, Knisley CB, Vogler AP (2000) New taxonomic status of the endangered tiger beetle Cicindela limbata albissima (Coleoptera: Cicindelidae): evidence from mtDNA. Ann Entomol Soc Am 93:1108–1115

    Article  CAS  Google Scholar 

  17. Murphy JD (1973) The geology of Eagle Cove at Bruneau, Idaho. M.S. Thesis. State University of New York at Buffalo

  18. Oviatt CG, Curry DR, Sack D (1992) Radiocarbon chronology of Lake Bonneville, Eastern Great Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol 99:225–241

    Article  Google Scholar 

  19. Pearson DL, Cassola F (1992) World-wide species richness patterns of tiger beetles (Coleoptera: Cicindelidae): indicator taxon for biodiversity and conservation studies. Conserv Biol 6:376–391

    Article  Google Scholar 

  20. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    PubMed  Article  CAS  Google Scholar 

  21. Rambaut A (2002) Se-Al: sequence alignment editor, v2.0a11. Molecular evolution, phylogenetics and epidemiology. http://tree.bio.ed.ac.uk/software/seal/. Accessed 2 May 2011

  22. Rambaut A, Drummond AJ (2004) Tracer. Molecular evolution, phylogenetics and epidemiology. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 2 May 2011

  23. Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656

    Google Scholar 

  24. Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Fitness and adaptation in a novel environment: effect of inbreeding, prior environment, and lineage. Evolution 57:1822–1828

    PubMed  Google Scholar 

  25. Rivalier E (1954) Démembrement du genre Cicindela Linné. II. Faune americaine. Rev Franc Entomol 21:249–268

    Google Scholar 

  26. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  Article  CAS  Google Scholar 

  27. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Sys Biol 51:492–508

    Article  Google Scholar 

  28. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247

    PubMed  Article  CAS  Google Scholar 

  29. Shook GA, Clark WH (1988) Status of the Idaho dunes tiger beetle, Cicindela arenicola Rumpp, (Coleoptera: Cicindelidae). J Idaho Acad Sci 24:38–42

    Google Scholar 

  30. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1991) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Google Scholar 

  31. Sites J Jr, Marshall J (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol S 35:199–227

    Article  Google Scholar 

  32. Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance. Conserv Genet 5:439–448

    Article  Google Scholar 

  33. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  Article  CAS  Google Scholar 

  34. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Sys Biol 57:758–771

    Article  Google Scholar 

  35. Vogler AP, Welsh A (1997) Phylogeny of North American Cicindela tiger beetles inferred from multiple mitochondrial DNA sequences. Mol Phylo Evol 8:225–235

    Article  CAS  Google Scholar 

  36. Vogler AP, DeSalle R, Assmann T, Knisley CB, Schultz TD (1993) Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Ann Entomol Soc Am 86:142–152

    Google Scholar 

  37. Vogler AP, Welsh A, Barraclough TG (1998) Molecular phylogeny of the Cicindela maritima (Coleoptera: Cicindelidae) group indicates fast radiation in western North America. Ann Entomol Soc Am 91:185–194

    Google Scholar 

  38. Vogler AP, Cardoso A, Barraclough TG (2005) Exploring rate variation among and within sites in a densely sampled tree: species level phylogenetics of North American tiger beeltes (Genus Cicindela). Sys Biol 54:4–20

    Article  Google Scholar 

  39. Winton RC, Kippenhan MG, Ivie MA (2010) New state record for Cicindela arenicola Rumpp (Coleoptera: Carabidae: Cicindelinae) in southwestern Montana. Coleopt Bull 64:43–44

    Article  Google Scholar 

  40. Woodcock MR, Kippenhan MG, Knisley CB, Foster JA (2007) Molecular genetics of Cicindela (Cylindera) terricola and elevation of C. lunalonga to species level, with comments on its conservation status. Conserv Genet 8:865–877

    Article  CAS  Google Scholar 

  41. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA 107:9264–9269

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ross Winton for sharing samples, Rob Cavallaro, Kevin Church, Suzin Romin, and Tim Weekley for assisting with field collection, and Mary Sterling for laboratory work. We also thank Dr. Ziheng Yang for suggestions regarding the species delimitation analyses with BP&P. Funding for this project was provided by U. S. Fish and Wildlife Service Grant E-50-1 to the Idaho Department of Fish and Game. We thank two anonymous reviewers and Dr. Alfried Vogler for helpful comments on a previous draft of this manuscript. This is contribution 1064 of the University of Idaho Forest, Wildlife and Range Experiment Station.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Caren S. Goldberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (PS 695 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, C.S., Tank, D.C., Uribe-Convers, S. et al. Species designation of the Bruneau Dune tiger beetle (Cicindela waynei) is supported by phylogenetic analysis of mitochondrial DNA sequence data. Conserv Genet 13, 373–380 (2012). https://doi.org/10.1007/s10592-011-0295-9

Download citation

Keywords

  • Bayesian species delimitation
  • Cicindela arenicola
  • Cicindela waynei
  • Mitochondrial DNA
  • Tiger beetle