Skip to main content

Advertisement

Log in

Influence of habitat fragmentation on the genetic structure of large mammals: evidence for increased structuring of African buffalo (Syncerus caffer) within the Serengeti ecosystem

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Wildlife species exposed to habitat fragmentation are often in need of a conservation effort. The African buffalo (Syncerus caffer) is one of the key species in the Serengeti ecosystem as they form a large part of the herbivore biomass, providing ecotourism and valuable trophies. The ecosystem is a part of Tanzanias protected areas and is administrated under different management practices. Among these, we have analysed the genetic structure of buffalo (n = 68) from the Serengeti National Park (SNP), the Ngorongoro conservation area (NCA) and the Maswa game reserve (MGR). Both the sequence variation in a 493 base pair fragment of the mitochondrial D-loop and the allele frequency-distribution in 15 microsatellites suggest genetic structuring of the buffalo populations within the ecosystem. Both the allele frequency-distribution and the amount of genetic variation were high and similar in SNP and MGR, suggesting a high degree of gene flow between these locations. By comparison, the NCA buffaloes had significantly lower genetic variation and were genetically differentiated from SNP and MGR. Approximate Bayesian computation estimates suggest that the observed genetic structure is of a recent origin, indicating that the recent increases in developmental activity in the region may have influenced the genetic structure of the buffalo within the Serengeti ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  PubMed  CAS  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SLF, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo L, Beattie CW (1994) A genetic linkage map for cattle. Genetics 136:619–639

    PubMed  CAS  Google Scholar 

  • Boone RB, Galvin KA, Thornton PK, Swift DM, Coughenour MB (2006) Cultivation and conservation in Ngorongoro conservation area, Tanzania. Hum Ecol 34:809–828

    Article  Google Scholar 

  • Buchanan FC, Galloway SM, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim Genet 25:60

    Google Scholar 

  • Chakraborty R, Jin L (1993) A unified approach to study hypervariable polymorphisms; statistical considerations of determining relatedness and population distance. EXS 67:153–175

    PubMed  CAS  Google Scholar 

  • Chantal S, Tim C, Simon M, Charles M, George S, Markus B (2007) Assessment of effectiveness of protection strategies in Tanzania based on a decade of survey data for large herbivores. Conserv Biol 21:635–646

    Article  Google Scholar 

  • Coltman DW (2008) Molecular ecological approaches to studying the evolutionary impact of selective harvesting in wildlife. Mol Ecol 17:221–235

    Article  PubMed  Google Scholar 

  • Conover MR (1997) Monetary and intangible valuation of deer in the United States. Wildl Soc Bull 25:298–305

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Cornuet JM, Santos F, Beaumont MA et al (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  PubMed  CAS  Google Scholar 

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Crawford AM, Dodds KG, Ede AJ, Pierson CA, Montgomery GW, Garmonsway HG, Beattie AE, Davies K, Maddox JF, Kappes SM, Stone RT, Nguyen TC, Penty JM, Lord EA, Broom JE, Buitkamp J, Schwaiger W, Epplen JT, Matthew P, Matthews ME, Hulme DJ, Beh KJ, McGraw RA, Beattie CW (1995) An autosomal genetic linkage map of the sheep genome. Genetics 140:703–724

    PubMed  CAS  Google Scholar 

  • Cross PCL, Lloyd JI, Getz WM (2005) Disentangling association patterns in fission-fusion societies using African buffalo as an example. Anim Behav 69:499–506

    Article  Google Scholar 

  • DeYoung RW, Honeycutt RL (2005) The molecular toolbox: genetic techniques in wildlife ecology and management. J Wildl Manag 69:1362–1384

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC (1994) Mutational processes of simple-sequence repeat loci in human population. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L. Skeels)] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Estes RD (1991) The behaviour guide to African mammals. The University of California Press, Berkeley

    Google Scholar 

  • Estes RD, Atwood JL, Estes AB (2006) Downward trends in Ngorongoro Crater ungulate populations 1986–2005: conservation concerns and the need for ecological research. Biol Conserv 131:106–120

    Article  Google Scholar 

  • Estoup A, Jarne PJ, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetic analysis. Mol Ecol 11:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin 3.01: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Filatov DA (2002) Proseq: a Software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624

    Article  CAS  Google Scholar 

  • Flagstad Ø, Syvertsen PO, Stenseth NC, Stacy JD, Olsaker I, Røed KH, Jakobsen KS (2000) Genetic variability in Swayne’s Hartebeest, an endangered antelope of Ethiopia. Conserv Biol 14:254–264

    Article  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res Camb 66:95–107

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Fu YX, Chakraborty R (1998) Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics 150:487–497

    PubMed  CAS  Google Scholar 

  • Fynn RWS, Bonyongo MC (2010) Functional conservation areas and the future of Africa’s wildlife. Afr J Ecol 49:175–188

    Article  Google Scholar 

  • Fyumagwa RD, Runyoro V, Horak IG, Hoare R (2007) Ecology and control of ticks as disease vectors in wildlife in Ngorongoro Crater, Tanzania. S Afr J Wildl Res 37:79–90

    Article  Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Galvin KA, Thornton PK, Boone RB, Sunderland (2004) Climate variability and impacts on east African livestock herders: the Maasai of Ngorongoro conservation area, Tanzania. Afr J Range Forage Sci 21:183–189

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • George AR (1975) Buffalo increase and seasonal use of Ngorongoro Crater. E Afr Wildl J 13:385–387

    Google Scholar 

  • Goldstein DB, Ruiz-Linares A, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471

    PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Release 2.9.3.2. Available via http://www.unil.ch/izea/softwares/fstat.html. Accessed on 2009

  • Grant PR, Grant BR (1992) Demography and the genetically effective sizes of two populations of Darwin finches. Ecology 73:766–784

    Article  Google Scholar 

  • Halley DJ, Vandewalle MEJ, Mari M, Taolo C (2002) Herd switching and long-distance dispersal in female African buffalo (Syncerus caffer). Afr J Ecol 40:97–99

    Article  Google Scholar 

  • Harley EH, Baumgarten I, Cunningham J, O’Ryan C (2005) Genetic variation and population structure in remnant populations of black rhinoceros, Diceros bicornis in Africa. Mol Ecol 14:2981–2990

    Article  PubMed  CAS  Google Scholar 

  • Heller R, Lorenzen ED, Okello JBA, Masembe C, Siegismund HR (2008) Mid-Holocene decline in African buffalos inferred from Bayesian coalescent-based analyses of microsatellites and mitochondrial DNA. Mol Ecol 17:4845–4858

    Article  PubMed  CAS  Google Scholar 

  • Heller R, Okello JBA, Siegismund H (2010) Can small wildlife conservancies maintain genetically stable populations of large mammals? Evidence for increased genetic drift in geographically restricted populations of Cape buffalo in East Africa. Mol Ecol 19:1324–1330

    Article  PubMed  CAS  Google Scholar 

  • Hilborn R, Arcese P, Borner M, Hando J, Hopcraft G, Loibooki M, Mduma S, Sinclair ARE (2006) Effective enforcement in a conservation area. Science 314:1266

    Article  PubMed  CAS  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  Google Scholar 

  • Iain JG, Alison JH, Marco F (2004) The management of wild large herbivores to meet economic, conservation and environmental objectives. J Appl Ecol 41:1021–1031

    Article  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kappes SM, Keele JW, Stone RT, McGraw RA, Sonstegard TS, Smith TPL, Lopez-Corrales NL, Beattie CW (1997) A second generation linkage map of the bovine genome. Genome Res 7:235–249

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kemp SJ, Brezinsky L, Teale AJ (1993) A panel of bovine, ovine and caprine polymorphic microsatellites. Anim Genet 25:363–365

    Google Scholar 

  • Kijazi A, Mkumbo S, Thompson DM (1997) Human and livestock population trends. In: Thompson DM (ed) Multiple land-use: the experience of the Ngorongoro conservation area, Tanzania. IUCN, Gland, pp 167–180

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of allele that can be maintained in a finite population. Genetics 49:725–738

    PubMed  CAS  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–3170

    Article  PubMed  CAS  Google Scholar 

  • Korte L (2009) Herd-switching in adult female African forest buffalo (Syncerus caffer nanus). Afr J Ecol 47:125–127

    Article  Google Scholar 

  • Kurji F (1981) Human population trends within and around the Ngorongoro conservation area: the demographic settings, BRARUP Research Report, No. 44

  • Kurji F (1985) Population and conservation in the Serengeti-Part 1, Institute of Resource Assessment Research Paper, No. 9

  • Loibooki M, Hofer H, Campbell K, East LE (2002) Bush meat hunting by communities adjacent to the Serengeti National Park, Tanzania: the importance of livestock ownership and alternative sources of protein and income. Environ Conserv 29:391–398

    Article  Google Scholar 

  • Lorenzen ED, Simonsen BOT, Kat PW, Arctander P, Siegismund HR (2006a) Hybridization between subspecies of waterbuck (Kobus ellipsiprymnus) in zones of overlap with limited introgression. Mol Ecol 15:3787–3799

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen ED, Arctander P, Siegismund HR (2006b) Regional genetic structuring and evolutionary history of the impala Aepyceros melampus. J Hered 97:119–132

    Article  PubMed  CAS  Google Scholar 

  • Lynn S (2000) The effects of conservation policy and ecology on pastoral land use patterns: a case study of Maasai land use in Northern Tanzania. MSc Thesis, Colorado State University, Fort Collins

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • McCabe JT, Mollel N, Tumaini A (1997) Food security and the role of cultivation. In: Thompson DM (ed) Multiple land-use: the experience of the Ngorongoro conservation area, Tanzania. IUCN, Gland, pp 397–416

    Google Scholar 

  • McNaughton SJ, Campbell K (1991) Long-term ecological research in African ecosystems. In: Risser PG (ed) Long-term research. Wiley, Chichester, pp 173–189

    Google Scholar 

  • Meertens HCC, Ndege LJ, Enserink HJ (1995) Dynamics in farming systems: changes in time and space in Sukumaland. Royal Tropical Institute, Arusha

    Google Scholar 

  • Metzger KL, Sinclair ARE, Hilborn R, Hopcraft JGC (2010) Evaluating the protection of wildlife in parks: the case of African buffalo in Serengeti. Biodivers Conserv 19:3431–3444

    Article  Google Scholar 

  • NCAA (Ngorongoro Conservation Area Authority) (1999) 1998 Aerial boma count, 1999 people and livestock census, and human population trend between 1954 and 1999 in the NCA. Research and Planning Unit. Ngorongoro Conservation Area Authority, Ngorongoro Crater

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Neumann RP (1998) Imposing wilderness: struggles over livelihood and nature preservation in Africa. University of California, Berkeley

    Google Scholar 

  • Newmark WD (2008) Isolation of African protected areas. Front Ecol Environ 6:321–328

    Article  Google Scholar 

  • O’Ryan C, Harley EH, Bruford MW, Beaumont M, Wayne RK, Cherry MI (1998) Microsatellite analysis of genetic diversity in fragmented South African buffalo populations. Anim Conserv 1:85–94

    Article  Google Scholar 

  • Ogutu ZA (2002) The impact of ecotourism on livelihood and natural resource management in Eselenkei, Amboseli ecosystem, Kenya. Land Degrad Dev 13:251–256

    Article  Google Scholar 

  • Okello JBA, Wittemyer G, Rasmussen HB, Arctander P, Nyakaana S, Douglas-Hamilton I, Siegismund HR (2008) Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants. Mol Ecol 17:3788–3799

    Article  PubMed  CAS  Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African buffalo. Social inequality and decision making. Champman and Hall, London

    Book  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ralph K, Karin EH, Otto H, Josef S, Bernhard S, Christoph S (2006) Genetic effect of transportation infrastructure on Roe Deer populations (Capreolus capreolus). J Hered 98:13–22

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (2008) GenePop’007: a complete re-implementation of the GenePop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Runyoro V, Hofer H, Chausi EB, Moehlman PD (1995) Long-term trends in the herbivore population of the Ngorongoro Crater, Tanzania. In: Sinclair ARE, Arcese P (eds) Serengeti II dynamics management and conservation of an ecosystem. University of Chicago Press, Chicago, pp 146–168

    Google Scholar 

  • Sidney J (1965) The past and present distribution of some African ungulates. Trans Zool Soc Lond 30:1–397

    Google Scholar 

  • Simonsen BT, Siegismund HR, Arctander P (1998) Population structure of African buffalo inferred from mtDNA sequences and microsatellite loci: high variation but low differentiation. Mol Ecol 7:225–237

    Article  PubMed  CAS  Google Scholar 

  • Sinclair ARE (1977) In: George BS (ed) The African buffalo, a study of resource limitation of population. Chicago University Press, Chicago, p 355

  • Solinas TS, Fries R (1993) Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm Genome 4:720–727

    Article  Google Scholar 

  • Songorwa AN (2004) Human population increase and wildlife conservation in Tanzania: Are the wildlife managers addressing the problem or treating symptoms? AJEAM-RAGEE 9:49–77

    Google Scholar 

  • Soulé ME, Mills S (1992) Conservation genetics and conservation biology: a troubled marriage. In: Sandlund OT, Hindar K, Brown AHD (eds) Conservation of biodiversity for sustainable development. Scandinavian University Press, Oslo, pp 55–69

    Google Scholar 

  • Stuwart SN, Adams RJ, Jenkins MD (1990) Biodiversity in sub-Sahara Africa and its islands. IUCN-SSC No. 6 IUCN. University of Chicago Press, Glands

    Google Scholar 

  • TAWIRI (2008) Aerial census in the Serengeti ecosystem, wet season report, TAWIRI aerial survey report

  • Thirgood S, Anna M, Sebastian T, Grant H, Ephraim M, Titus M, Morris K, John F, Sinclair ARE, Markus B (2004) Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim Conserv 7:113–120

    Article  Google Scholar 

  • Van Hooft WF, Groen AF, Prins HHT (2000) Microsatellite analysis of genetic diversity in African buffalo (Syncerus caffer) populations throughout Africa. Mol Ecol 9:2017–2025

    Article  PubMed  Google Scholar 

  • Van Hooft WF, Groen AF, Prins HHT (2002) Phylogeography of the African buffalo based on mitochondrial and y-chromosomal loci: pleistocene origin and population expansion of the Cape buffalo subspecies. Mol Ecol 11:267–279

    Article  PubMed  Google Scholar 

  • Van Hooft WF, Groen AF, Prins HHT (2003) Genetic structure of African buffalo herds based on variation at the mitochondrial D-loop and autonomic microsatellite loci: evidence for male-biased gene flow. Conserv Genet 4:467–477

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintaining high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol Ecol 7:1315–1322

    Article  PubMed  CAS  Google Scholar 

  • World Resources Institute (Cited as WRI) (1989) An assessment of the resource base that supports the global economy. Basic Books Inc., New York

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The SNP, MGR and NCA Managements Authorities are acknowledged for allowing sampling of buffaloes. COSTECH and TAWIRI are acknowledged for offering research permit. Thanks to the Norwegian Programme for Development, Research and Education (NUFU) for funding. Members of the Antelope conservation project are acknowledged for revising the manuscript. Liv Midthjell, Ellen Gunby and Margrethe Jacobsen are acknowledged for their assistance during laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Røed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Supplementary material 2 (DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernest, E.M., Haanes, H., Bitanyi, S. et al. Influence of habitat fragmentation on the genetic structure of large mammals: evidence for increased structuring of African buffalo (Syncerus caffer) within the Serengeti ecosystem. Conserv Genet 13, 381–391 (2012). https://doi.org/10.1007/s10592-011-0291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0291-0

Keywords

Navigation