Conservation genetics and ecology of an endemic montane palm on Lord Howe Island and its potential for resilience

Abstract

Lepidorrhachis mooreana (Arecaceae) is a monotypic palm genus endemic to the remote Lord Howe Island where it is restricted to a small area of cloud forest above 750 m that is likely to be vulnerable to climate change. We investigated genetic diversity and key demographic parameters to assess the palm’s potential long term viability including possible climate change impacts. The palm was found on only one of the island’s two mountain summits, where the sampled sites were effectively behaving as one panmictic population. The moderate genetic diversity found indicates some adaptive potential for L. mooreana. The population was effectively inbred. Large numbers of fruit are produced, but successful juvenile recruitment is limited by predation by introduced rats. The relatively large population size increases the potential for selection for adaptation to a changing climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134

    PubMed  Google Scholar 

  2. Alsos IG, Alm T, Normand S, Brochmann C (2008) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Glob Ecol Biogeog 17:1–17

    Google Scholar 

  3. Annapurna C, Singh JS (2003) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Curr Sci 85:197–201

    Google Scholar 

  4. Auld TD, Hutton I, Ooi MKJ, Denham AJ (2010) Disruption of recruitment in two endemic palms on Lord Howe Island by invasive rats. Biol Invasions 12:1–11

    Article  Google Scholar 

  5. Babik W, Butlin RK, Papadopulos AST, Baker WJ, Boulesteix M, Anstett M-C, Lexer C, Hutton I, Savolainen V (2009) How sympatric is speciation in the Howea palms of Lord Howe Island. Mol Ecol 18:3628–3629

    Google Scholar 

  6. Baker WJ, Hutton I (2006) Lepidorrhachis. Palm 50:33–38

    Google Scholar 

  7. Baker WJ, Savolainen V, Asmussen-Lange C, Chase MW, Dransfield J, Forest F, Harley MM, Uhl NW, Wilkinson MW (2009) Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Syst Biol 58(2):240–256. doi:10.1093/sysbio/syp021

    PubMed  Article  Google Scholar 

  8. Berry EJ, Gorchov DL (2006) Female fecundity is dependent on substrate rather than male abundance, in the wind-pollinated, dioecious understory palm Chamaedorea radicalis. Biotropica 39:186–194

    Article  Google Scholar 

  9. Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC (2001) Development, characterisation and cross-taxa utility of oil palm (Elaeis guineensis Jacq) microsatellite markers. Genome 44:413–425

    PubMed  CAS  Google Scholar 

  10. Billotte N, Marseillac N, Brottier P, Noyer J-L, Jacquemoud-Collet J-P, Moreau C, Couvreur T, Chevallier M-H, Pintaud J-C, Risterucci A-M (2004a) Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.); characterisation and utility across the genus Phoenix and in other palm genera. Mol Ecol Notes 4:256–258

    Article  CAS  Google Scholar 

  11. Billotte N, Couvreur T, Marseillac N, Brottier P, Perthuis B, Vallejo M, Noyer J-L, Jacquemoud-Collet J-P, Risterucci A-M, Pantaus J-C (2004b) A new set of microsatellite markers for the peach palm (Bactris gasipaes) characterisation and across-taxa utility within the tribe Cocoeae. Mol Ecol Notes 4:580–582

    Article  CAS  Google Scholar 

  12. Cibrián-Jaramillo A, Hahn W, Desalle R (2008) Development of microsatellite markers of the Mexican understorey palm Chamaedorea elegans, cross-species genotyping, and amplification in congeners. Mol Ecol Res 8:322–324

    Article  Google Scholar 

  13. De Steven D, Windsor DM, Putz FE, de Leon B (1987) Vegetative and reproductive phenologies of a palm assemblage in Panama. Biotropica 19:342–356

    Article  Google Scholar 

  14. Doi H, Takahshi M, Katano I (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Glob Change Biol 16:373–379

    Article  Google Scholar 

  15. Dowe JL (2010) Australian palms: biogeography, ecology and systematics. CSIRO, Collingwood

    Google Scholar 

  16. Dowe JL, Benzie J, Ballment E (1997) Ecology and genetics of Carpoxylon macrospermum H.Wendl. and Drude (Arecaceae), and endangered palm from Vanuatu. Biol Conserv 79:205–216

    Article  Google Scholar 

  17. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum: the evolution and classification of palms. Kew Publishing, Royal Botanic Gardens, Kew

    Google Scholar 

  18. Eguiarté LE, Perez-Nasser N, Piñero D (1992) Genetic structure, outcrossing rate and heterosis in Astrocaryum mexicanum (tropical palm): implications for evolution and conservation. Heredity 69:217–228

    Article  Google Scholar 

  19. Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculate in relation to climate change. II. Genetic architecture of three populations reciprocally transplanted along an environmental gradient in the Great Plains. Evolution 58:1459–1471

    PubMed  Google Scholar 

  20. Fleischer-Dogley F, Kettle CJ, Edwards PJ, Ghazoul J, Määttänen K, Kaiser-Bunbury CN (2011) Morphological and genetic differentiation in populations of the dispersal-limited coco de mer (Lodoicea maldivica): implications for management and conservation. Divers Distrib 17:235–243

    Article  Google Scholar 

  21. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, UK

    Google Scholar 

  22. Gaiotto FA, Grattapaglia D, Vencovsky R (2003) Genetic structure, mating system and long-distance gene flow in heart of palm (Euterpe edulis Mart.). J Hered 94:399–406

    PubMed  Article  CAS  Google Scholar 

  23. Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    PubMed  Article  Google Scholar 

  24. Gienapp P, Teplitsky C, Alho JS, Mills A, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    PubMed  Article  CAS  Google Scholar 

  25. González-Pérez MA, Caujapé-Castells J, Sosa PA (2004) Allozyme variation and structure of the Canarian endemic palm tree Phoenix canariensis (Arecaceae): implications for conservation. Heredity 93:307–315

    PubMed  Article  Google Scholar 

  26. Green PS (1994) Norfolk Island and Lord Howe Island. In: Wilson AJG (ed) Flora of Australia. Oceanic Islands. Australian Government Publishing Service, Canberra, pp 1–26

    Google Scholar 

  27. Hamilton LS, Juvik JO, Scatena FN (1994) Tropical Montane cloud forests. Springer-Verlag, New York

    Google Scholar 

  28. Harris R, Cassis G, Auld T, Hutton I (2005) Floristics and structure of the mossy cloud forest of Mt Gower summit, Lord Howe Island. Pac Conserv Biol 11:246–256

    Google Scholar 

  29. Henderson SA, Billotte N, Pintaud J-C (2006) Genetic isolation of Cape Verde Island Phoenix atlantica (Arecaceae) revealed by microsatellite markers. Conserv Genet 7:213–223. doi:10.1001/s10592-006-9128-7

    Article  CAS  Google Scholar 

  30. Holwerda F, Burkard R, Eugster W, Scatene FN, Meesters AGCA, Bruijnzeel LA (2006) Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrol Process 20:2669–2692

    Article  Google Scholar 

  31. Hughes LA (2003) Climate change and Australia: trends, projections and impacts. Aust Ecol 28:423–443

    Article  Google Scholar 

  32. Hutton I (2009) A guide to world heritage Lord Howe Island. Hutton, Lord Howe Island, NSW

    Google Scholar 

  33. Irvine I (1978) Late pliocene-quaternary biostratigraphy and climatic change in DSDP 208, Lord Howe Rise. Bull Aust Soc Exp Geophys 9:146–148

    Article  Google Scholar 

  34. IUCN Red List (2011) Species on the edge of survival: 365 of the World’s most at risk species. Collins. http://www.harpercollins.co.uk/Titles/63022/species-on-the-edge-of-survival-iucn-red-list-9780007419142

  35. Johnson D (ed) (1996) Palms: their conservation and sustained utilization. Status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  36. Jump AS, Peňuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  37. Jump AS, Peňuelas J, Rico L, Ramallo E, Estiarte M, Martinez JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Change Biol 14:637–643

    Article  Google Scholar 

  38. Le Cadre S, Tully T, Mazer SJ, Ferdy J-B, Moret J, Machon N (2008) Allee effects within small populations of Aconitum napellus ssp. lusitanicum, a protected subspecies in Northern France. New Phytol 179:1171–1182

    PubMed  Article  Google Scholar 

  39. Leimu RA, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  40. Loope LL, Giambelluca TW (1999) Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii. Clim Change 39:503–517

    Article  Google Scholar 

  41. Luna R, Epperson BK, Oyama K (2007) High levels of genetic variability and inbreeding in two Neotropical dioecious palms with contrasting life histories. Heredity 99:466–476

    PubMed  Article  CAS  Google Scholar 

  42. Lynch M, Lande R (1993) Evolution and extinction in response to environmental change. In: Kareiva PM, Kingsolver J (eds) Biotic interactions and global change. Sinauer Associates inc., Sunderland, pp 234–250

    Google Scholar 

  43. Maunder M, Page W, Mauremootoo J, Payendee R, Mungroo Y, Maljkovic A, Vericel C, Lyte B (2002) The decline and conservation management of the threatened endemic palms of the Mascarene Island. Oryx 36:56–65

    Article  Google Scholar 

  44. McDougall I, Embleton BJ, Stone DB (1981) Origin and evolution of Lord Howe Island, southwest Pacific Ocean. J Geol Soc Aust 28:155–176

    Article  CAS  Google Scholar 

  45. Menzel A, Sparks TH, Estrella N, Roy DB (2006) Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol Biogeogr 15:498–504

    Google Scholar 

  46. Miller-Rushing AJ, Inouye DW, Primack RB (2008) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J Ecol 96:1289–1296

    Article  Google Scholar 

  47. Mitton JB, Duran KL (2004) Genetic variation in pinion pine Pinus adulis associated with summer precipitation. Mol Ecol 13:1259–1264

    PubMed  Article  CAS  Google Scholar 

  48. Montague JL, Barrett SCH, Eckert CG (2007) Re-establishment of clinal variation in flowering time among introduced populations of the purple loosestrife (Lythrum salicaria, Lythraceae). J Evol Biol 21:234–245

    PubMed  Google Scholar 

  49. Montufar R, Mariac C, Pham J-L, Pintaud J-C (2006) Isolation of 23 polymorphic microsatellite loci in the Neotrpical palm Oenocarpus bataua Martius (Arecaceae). Mol Ecol Notes 7:75–78

    Article  Google Scholar 

  50. Norup MV, Dransfield J, Chase MW, Barfod AS, Fernando ES, Baker WJ (2006) Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). Am J Bot 93:1065–1080

    PubMed  Article  CAS  Google Scholar 

  51. Nucci SM, Azevedo-Filho A, Colombo CA, Priolli RHG, Coelho RM, Mata TL, Zucchi MI (2008) Development and characterization of microsatellites markers from the macaw. Mol Ecol Res 8:224–226

    Article  CAS  Google Scholar 

  52. Papadopulos AST, Baker WJ, Crayn D, Butlin RK, Kynast RG, Hutton I, Savolainen V (2011) Speciation with gene flow on Lord Howe Island. PNAS 108:13188–13193

    Google Scholar 

  53. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra

    Google Scholar 

  54. Perera L, Russell JR, Provan J, Powell W (1999) Identification and characterisation of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8:335–346

    Article  Google Scholar 

  55. Pickard J (1983) Vegetation of Lord Howe Island. Cunninghamia 1:133–266

    Google Scholar 

  56. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a topical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  57. Ratsirarson J, Silander JA Jr, Richard AF (1996) Conservation and management of a threatened Madagascar palm species, Neodypsis decaryi, Jumelle. Conserv Biol 10:40–52

    Article  Google Scholar 

  58. Savolainen O, Bokma F, Garcia-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climate changes. For Ecol Manage 197:79–89

    Article  Google Scholar 

  59. Savolainen V, Anstett M-C, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an Oceanic Island. Nature 441:210–213

    PubMed  Article  CAS  Google Scholar 

  60. Shapcott A (1998) The genetics of Ptychosperma bleeseri, a rare palm from the Northern Territory, Australia. Biol Conserv 85:203–209

    Article  Google Scholar 

  61. Shapcott A, Rakotoarinivo M, Smith RJ, Lysaková G, Fay MF, Dransfield J (2007) Can we bring Madagascar’s critically endangered palms back from the brink? Using an understanding of genetics and ecology to guide a conservation and recovery programme for the iconic and critically endangered palm Beccariophoenix madagascariensis. Bot J Lin Soc 154:589–608

    Article  Google Scholar 

  62. Shapcott A, Dowe J, Ford H (2009) Low genetic diversity and recovery implications of the vulnerable Bankoualé Palm Livistona carinensis (Arecaceae), from North-eastern Africa and the Southern Arabian Peninsula. Conserv Genet 10:317–327

    Article  CAS  Google Scholar 

  63. Shimizu M, Kosaka N, Shimada T, Nagahata T, Iwasaki H, Nagai H, Emi M (2002) Universal fluorescent labelling (UFL) method for automated microsatellite analysis. DNA Res 9:173–178

    PubMed  Article  CAS  Google Scholar 

  64. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al. (2004) Extinction risk from climate change. Nature 427:145–148

    PubMed  Article  CAS  Google Scholar 

  65. Toh S, Imamura A, Watanabe A et al. (2008) High temperature-induced Abscisic acid biosynthesis and its role in the inhibition of Gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    PubMed  Article  CAS  Google Scholar 

  66. Trivedi MR, Berry PM, Morecroft MD, Dawson TP (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Change Biol 14:1089–1103

    Article  Google Scholar 

  67. Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Goldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    PubMed  Article  CAS  Google Scholar 

  68. Westoby M, Burgman M (2006) Climate change as a threatening process. Aust Ecol 31:549–550

    Article  Google Scholar 

  69. Young AG, Clarke GM (2000) Genetics, demography and viability of fragmented populations. Cambridge University Press, UK

    Google Scholar 

  70. Zadroga F (1981) The hydrological importance of a montane cloud forest area of Costa Rica. In: Lal R, Russel EW (eds) Tropical agricultural hydrology. Wiley, New York, pp 59–73

    Google Scholar 

Download references

Acknowledgments

The project was funded by Department of Environment and Climate Change NSW and the University of the Sunshine Coast. We wish to thank the Lord Howe Island Management Board especially Bruce Thompson and Sue and Hank Bower for field assistance. We would also like to thank Jack Shick for field assistance, Dean Hiscox for climbing expertise and Alex Papadopulos for GIS support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Shapcott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shapcott, A., Hutton, I., Baker, W.J. et al. Conservation genetics and ecology of an endemic montane palm on Lord Howe Island and its potential for resilience. Conserv Genet 13, 257–270 (2012). https://doi.org/10.1007/s10592-011-0282-1

Download citation

Keywords

  • Arecaceae
  • Conservation genetics
  • Demography
  • Climate change
  • Pacific Island
  • Palmae
  • Population viability
  • Predation
  • Reproduction
  • Subtropical cloud forest