Skip to main content
Log in

Genetic structure of the endangered Leucomeris decora (Asteraceae) in China inferred from chloroplast and nuclear DNA markers

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The genetic variation and structure of Leucomeris decora, an endangered species in China were investigated. Analyses of three chloroplast DNA (cpDNA) regions (the rpl16 intron, trnQ-5′rps16 intergenic spacer and rpl32-trnL intergenic spacer) and one nuclear gene (GAPDH: encoding glyceraldehyde 3-phosphate dehydrogenase) were conducted on 11 L. decora populations. Low levels of cpDNA genetic diversity were found in this species and within populations, with the identification of 2 haplotypes in a total of 2,745 bp, while the level of genetic diversity revealed by the nuclear gene GAPDH was relatively high, indicating that random losses of genetic polymorphisms from populations may have occurred recently. High levels of genetic differentiation among populations for both markers were detected in L. decora, which could be a consequence of the limited gene flow caused by geographic isolation among populations. An analysis of molecular variance revealed at the nuclear locus suggested the presence of geographic structure within the haplotype distribution possibly due to geographical barriers among populations. The haplotype network and mismatch distribution analyses did not detect the signal for a recent population expansion in L. decora. L. decora may persist in situ during climatic oscillations. Based on the genetic diversity and uniqueness of the populations, conservation strategies are discussed for this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol Ecol 12:299–313

    Article  PubMed  Google Scholar 

  • Aguilar-Melendez A, Morrell PL, Roose ML, Kim S-C (2009) Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am J Bot 96:1190–1202

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Axelrod DI, Al Shehbaz I, Raven PH (1996) Floristic characteristics and the modern flora of China. In: Zhang A, Wu S (eds) History of the modern flora of China. Springer, New York, pp 43–55

    Google Scholar 

  • Bain JF, Golden JL (2003) Phylogeographic relationships within Packera sanguisorboides (Asteraceae), a narrow endemic species that straddles a major biogeographic boundary. Am J Bot 90:1087–1094

    Article  PubMed  Google Scholar 

  • Banu S, Bhagwat R, Kadoo N, Lagu M, Gupta V (2010) Understanding the genetic structure of Symplocos laurina Wall. Populations using nuclear gene markers. Genetica 138:197–210

    Article  PubMed  Google Scholar 

  • Chen KM, Abbott RJ, Milne RI, Tian XM, Liu JQ (2008) Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Mol Ecol 17:4276–4288

    Article  PubMed  CAS  Google Scholar 

  • Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122

    PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664

    Article  PubMed  Google Scholar 

  • Cruzan MB, Templeton AR (2000) Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends Ecol Evol 15:491–496

    Article  PubMed  Google Scholar 

  • Doyle J (1991) DNA protocols for plants—CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin

    Google Scholar 

  • Echt CS, Deverno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316

    Article  Google Scholar 

  • Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Fu LG, Jin JM (1992) The red book of Chinese plants: rare and endangered plants. Science Press, Beijing

    Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Funk VA, Susanna A, Steussy TF, Bayer RJ (2009) Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Vienna

    Google Scholar 

  • Godt MJW, Johnson BR, Hamrick JL (1996) Genetic diversity and population size in four rare Southern Appalachian plant species. Conserv Biol 10:796–805

    Article  Google Scholar 

  • Gong X, Luan SS, Hung KH, Hwang CC, Lin CJ, Chiang YC, Chiang TY (2011) Population structure of Nouelia insignis (Asteraceae), an endangered species in southwestern China, based on chloroplast DNA sequences: recent demographic shrinking. J Plant Res 124:221–230

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland

    Google Scholar 

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Diversity of temperate plants in East Asia. Nature 413:129–130

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Miller PS (1992) Conservation genetics: techniques and fundamentals. Ecol Appl 2:30–46

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195

    Article  CAS  Google Scholar 

  • Huang JC, Wang WK, Peng CI, Chiang TY (2005) Phylogeography and conservation genetics of Hygrophila pogonocalyx (Acanthaceae) based on atpB-rbcL noncoding spacer cpDNA. J Plant Res 118:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hwang SY, Lin TP, Ma CS, Lin CL, Chung JD, Yang JC (2003) Postglacial population growth of Cunninghamia konishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNA variation. Mol Ecol 12:2689–2695

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Senni K, Fujii N, Setoguchi H (2008) Consistent geographic structure among multiple nuclear sequences and cpDNA polymorphisms of Cardamine nipponica Franch. et Savat. (Brassicaceae). Mol Ecol 17:3178–3188

    Article  PubMed  CAS  Google Scholar 

  • Ikuyo S, Noriaki M (2009) Chloroplast DNA phylogeography of the endangered Japanese red maple (Acer pycnanthum): the spatial configuration of wetlands shapes genetic diversity. Divers Distrib 15:917–927

    Article  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612

    Article  PubMed  CAS  Google Scholar 

  • Johansson US, Ericson PGP (2005) A re-evaluation of basal phylogenetic relationships within trogons (Aves: Trogonidae) based on nuclear DNA sequences. J Zool Syst Evol Res 43:166–173

    Article  Google Scholar 

  • Jones J, Gibson J (2011) Population genetic diversity and structure within and among disjunct populations of Alnus maritima (seaside alder) using microsatellites. Conserv Genet 12:1003–1013

    Article  Google Scholar 

  • Léotard G, Duputi A, Kjellberg F, Douzery EJP, Debain C, de Granville J-J, McKey D (2009) Phylogeography and the origin of cassava: new insights from the northern rim of the Amazonian basin. Mol Phylogenet Evol 53:329–334

    Article  PubMed  Google Scholar 

  • Li WY (1998) Vegetation and climate in the Quaternary in China. Science Press, Beijing

    Google Scholar 

  • Li EX, Yi S, Qiu YX, Guo JT, Comes HP, Fu CX (2008) Phylogeography of two East Asian species in Croomia (Stemonaceae) inferred from chloroplast DNA and ISSR fingerprinting variation. Mol Phylogenet Evol 49:702–714

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    Article  PubMed  CAS  Google Scholar 

  • Molins A, Mayol M, Rosselló JA (2009) Phylogeographical structure in the coastal species Senecio rodriguezii (Asteraceae), a narrowly distributed endemic Mediterranean plant. J Biogeogr 36:1372–1383

    Article  Google Scholar 

  • Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726

    Article  Google Scholar 

  • Mousadik AE, Petit RJ (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 5:547–555

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105:205–217

    Google Scholar 

  • Novaes RML, Filho JPDL, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol Ecol 19:985–998

    Article  PubMed  Google Scholar 

  • Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591

    Article  PubMed  CAS  Google Scholar 

  • Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782

    Article  PubMed  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization of oaks. Proc Natl Acad Sci USA 94:9996–10001

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  PubMed  CAS  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed  CAS  Google Scholar 

  • Qiu YX, Guan BC, Fu CX, Comes HP (2009) Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Mol Phylogenet Evol 51:281–293

    Article  PubMed  CAS  Google Scholar 

  • Ramos ACS, De Lemos-Filho JP, Lovato MB (2009) Phylogeographical structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. J Hered 100:206–216

    Article  PubMed  CAS  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Ribeiro RA, Lemos JP, Ramos ACS, Lovato MB (2011) Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest. Heredity 106:46–57

    Article  PubMed  CAS  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  • Rønsted N, Weiblen GD, Savolainen V, Cook JM (2008) Phylogeny, biogeography, and ecology of Ficus section Malvanthera (Moraceae). Mol Phylogenet Evol 48:12–22

    Article  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  PubMed  CAS  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Shih FL, Hwang SY, Cheng YP, Lee PF, Lin TP (2007) Uniform genetic diversity, low differentiation, and neutral evolution characterize contemporary refuge populations of Taiwan fir (Abies kawakamii, Pinaceae). Am J Bot 94:194–202

    Article  PubMed  Google Scholar 

  • Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315

    Article  PubMed  CAS  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  PubMed  CAS  Google Scholar 

  • Strand AE, Leebens-Mack J, Milligan BG (1997) Nuclear DNA-based markers for plant evolutionary biology. Mol Ecol 6:113–118

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tan B, Liu K, Yue XL, Liu F, Chen JM, Wang QF (2008) Chloroplast DNA variation and phylogeographic patterns in the Chinese endemic marsh herb Sagittaria potamogetifolia. Aquat Bot 89:372–378

    Article  CAS  Google Scholar 

  • Tani N, Tsumura Y, Sato H (2003) Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Mol Ecol 12:859–868

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Setsuko S, Kawahara T, Yoshimaru H (2005) Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers. Conserv Genet 6:563–574

    Article  CAS  Google Scholar 

  • Vaezi J, Brouillet L (2009) Phylogenetic relationships among diploid species of Symphyotrichum (Asteraceae: Astereae) based on two nuclear markers, ITS and GAPDH. Mol Phylogenet Evol 51:540–553

    Article  PubMed  CAS  Google Scholar 

  • Wang SY (2002) Yunnan geography. Yunnan Nation Press, Kunming

    Google Scholar 

  • Wang HW, Ge S (2006) Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol Ecol 15:4109–4122

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Pan YZ, Gong X, Chiang YC, Kuroda C (2011) Chloroplast DNA variation and phylogeography of Ligularia tongolensis (Asteraceae), a species endemic to the Hengduan Mountains region of China. J Syst Evol 49:108–119

    Article  Google Scholar 

  • Winkler MG, Wang PK (1993) The late-Quaternary vegetation and climate of China. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota, Minneapolis

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114

    PubMed  CAS  Google Scholar 

  • Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Mol Ecol 17:5135–5145

    Article  PubMed  Google Scholar 

  • Yue JP, Sun H, David AB, Li JH, Ihsan AA-S, Richard REE (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. J Syst Evol 47:402–415

    Article  Google Scholar 

  • Zheng Z (2000) Late Quaternary vegetational and climatic changes in the tropical and subtropical areas of China. Acta Micropalaeontol Sin 17:125–146

    Google Scholar 

Download references

Acknowledgments

We thank Hong Wang, Guoping Yang, and Shishun Zhou (Xishuangbanna Tropical Botanical Garden) and Qitai Zhang for their assistance with field sampling. This work was funded by the National Basic Research Program of China (973 Program: 2007CB411600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y.J., Gong, X. Genetic structure of the endangered Leucomeris decora (Asteraceae) in China inferred from chloroplast and nuclear DNA markers. Conserv Genet 13, 271–281 (2012). https://doi.org/10.1007/s10592-011-0281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0281-2

Keywords