Skip to main content

Removing exogenous information using pedigree data

Abstract

Management of certain populations requires the preservation of its pure genetic background. When, for different reasons, undesired alleles are introduced, the original genetic conformation must be recovered. The present study tested, through computer simulations, the power of recovery (the ability for removing the foreign information) from genealogical data. Simulated scenarios comprised different numbers of exogenous individuals taking part of the founder population and different numbers of unmanaged generations before the removal program started. Strategies were based on variables arising from classical pedigree analyses such as founders’ contribution and partial coancestry. The efficiency of the different strategies was measured as the proportion of native genetic information remaining in the population. Consequences on the inbreeding and coancestry levels of the population were also evaluated. Minimisation of the exogenous founders’ contributions was the most powerful method, removing the largest amount of genetic information in just one generation. However, as a side effect, it led to the highest values of inbreeding. Scenarios with a large amount of initial exogenous alleles (i.e. high percentage of non native founders), or many generations of mixing became very difficult to recover, pointing out the importance of being careful about introgression events in populations where these are undesired.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  2. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  3. Barilani M, Deregnaucourt S, Gallego S, Galli L, Mucci N, Piombo R, Puigcerver M, Rimondi S, Rodriguez-Teijeiro JD, Spano S, Randi E (2005) Detecting hybridization in wild (Coturnix c. coturnix) and domesticated (Coturnix c. japonica) quail populations. Biol Conserv 126:445–455

    Article  Google Scholar 

  4. Beaumont M, Barratt EM, Gottelli D, Kitchener AC, Daniels MJ, Pritchard JK, Bruford MW (2001) Genetic diversity and introgression in the Scottish wildcat. Mol Ecol 10:319–336

    PubMed  Article  CAS  Google Scholar 

  5. Bouman I, Bouman J (1994) The history of the Przewalski’s horse. In: Boyd L, Houpt KA (eds) Przewalski’s horse: the history and biology of an endangered species. State University of New York Press, New York, pp 5–38

    Google Scholar 

  6. Boyer MC, Muhlfeld CC, Allendorf FW (2008) Rainbow trout (Oncorhynchus mykiss) invasion and the spread of hybridization with native westslope cutthroat trout (Oncorhynchus clarkii lewisi). Can J Fish Aquat Sci 65:658–669

    Article  Google Scholar 

  7. Butler K, Field C, Herbinger CM, Smith BR (2004) Accuracy, efficiency and robustness of four algorithms allowing full sibship reconstruction from DNA marker data. Mol Ecol 13:1589–1600

    PubMed  Article  CAS  Google Scholar 

  8. Caballero A, Toro MA (2000) Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet Res 75:331–343

    PubMed  Article  CAS  Google Scholar 

  9. Dalvit C, De Marchi M, Cassandro M (2007) Genetic traceability of livestock products: a review. Meat Sci 77:437–449

    Article  CAS  Google Scholar 

  10. Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton

    Google Scholar 

  11. Fernandez J, Toro MA (1999) The use of mathematical programming to control inbreeding in selection schemes. J Anim Breed Genet 116:447–466

    Article  Google Scholar 

  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  13. Freese CH, Aune KE, Boyd DP, Derr JN, Forrest SC, Gates CC, Goyan PJP, Grassel SM, Halbert ND, Kunkel K, Redford KH (2007) Second chance for the plains bison. Biol Conserv 136:175–184

    Article  Google Scholar 

  14. Gandini G, Oldenbroek K (2007) Strategies for moving from conservation to utilisation. In: Oldenbroek K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, Wageningen, pp 29–54

    Google Scholar 

  15. Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S, Consortium G (2010) Genetic diversity in farm animals—a review. Anim Genet 41:6–31

    PubMed  Article  Google Scholar 

  16. Halbert ND, Derr JN (2007) A comprehensive evaluation of cattle introgression into US federal bison herds. J Hered 98:1–12

    PubMed  Article  CAS  Google Scholar 

  17. Hall SJG, Bradley DG (1995) Conserving livestock breed biodiversity. Trends Ecol Evol 10:267–270

    PubMed  Article  CAS  Google Scholar 

  18. Ingvarsson PK (2001) Restoration of genetic variation lost—the genetic rescue hypothesis. Trends Ecol Evol 16:62–63

    PubMed  Article  Google Scholar 

  19. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    PubMed  Article  CAS  Google Scholar 

  20. Lacy RC (1997) Errata. Evolution 51:1025

    Article  Google Scholar 

  21. Lacy RC, Alaks G, Walsh A (1996) Hierarchical analysis of inbreeding depression in Peromyscus polionotus. Evolution 50:2187–2200

    Article  Google Scholar 

  22. MAPA, (de) Ministerio de Agricultura, Pesca y Alimentación. (2003) Estudio y caracterización del sector equino en España, Madrid. http://www.eurocarne.com/informes/pdf/sector-equino.pdf

  23. Miller CR, Adams JR, Waits LP (2003) Pedigree-based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Mol Ecol 12:3287–3301

    PubMed  Article  CAS  Google Scholar 

  24. Negro JJ, Torres MJ, Godoy JA (2001) RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa × A. graeca) in Spain. Biol Conserv 98:19–24

    Article  Google Scholar 

  25. Padilla JA, Sansinforiano E, Parejo JC, Rabasco A, Martínez-Trancón M (2009) Inference of admixture in the endangered Blanca Cacereña bovine breed by microsatellite analyses. Livest Sci 122:314–322

    Article  Google Scholar 

  26. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    PubMed  Article  CAS  Google Scholar 

  27. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  28. Sušnik S, Berrebi P, Dovc P, Hansen MM, Snoj A (2004) Genetic introgression between wild and stocked salmonids and the prospects for using molecular markers in population rehabilitation: the case of the Adriatic grayling (Thymallus thymallus L. 1785). Heredity 93:273–282

    PubMed  Article  Google Scholar 

  29. Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    PubMed  Article  Google Scholar 

  30. Volf J (1994) The Studbook. In: Boyd L, Houpt KA (eds) Przewalski’s horse: the history and biology of an endangered species. State University of New York Press, New York, pp 61–73

    Google Scholar 

Download references

Acknowledgments

This work was financed by Plan Nacional I+D+i (Spain) CGL2009-13278-C02-02. Carmen Amador was supported by a FPI-INIA Grant (INIA/Ministerio de Ciencia e Innovación). We are thankful to Luis Alberto García Cortés for making available the whole pedigree of Przewalski’s horse and to Beatriz Villanueva on useful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carmen Amador.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amador, C., Toro, M.Á. & Fernández, J. Removing exogenous information using pedigree data. Conserv Genet 12, 1565–1573 (2011). https://doi.org/10.1007/s10592-011-0255-4

Download citation

Keywords

  • Undesired introgression
  • Genetic recovery