Advertisement

Conservation Genetics

, Volume 12, Issue 5, pp 1345–1355 | Cite as

Crumbling diversity: comparison of historical archived and contemporary natural populations indicate reduced genetic diversity and increasing genetic differentiation in the golden-cheeked warbler

  • Giridhar Athrey
  • Denise L. Lindsay
  • Richard F. Lance
  • Paul L. Leberg
Research Article

Abstract

Genetic viability of threatened and endangered species is of increasing concern with habitat loss and fragmentation. Valuable assessments of the genetic status of endangered species are difficult in most cases, where only single sample estimates are available. Using historical and contemporary samples, we assessed the impact of both historical and recent demographic changes on population genetics of the endangered golden-cheeked warbler, (Dendroica chrysoparia). Our study documents a steep decline in genetic diversity in an endangered species over a 100-year period, along with concurrent increase in genetic differentiation, and low contemporary effective sizes for all the populations we evaluated. While adding to the growing body of literature that describes the genetic impacts of habitat fragmentation, our study may also serve as an informative guide to future management of endangered species. Our study underlines the importance of long term population genetic monitoring in understanding the full extent of genetic changes in endangered species.

Keywords

Genetic diversity Fragmentation Effective population size Endangered birds Historical-contemporary samples 

Notes

Acknowledgments

We thank the AMNH, New York, NY, MCZ Harvard University, Cambridge, MA, FMNH, Chicago, IL, and NMNH, Washington DC for tissue samples. We thank Ft. Hood, Kerr WMA, Balcones Canyonlands NWR, TPWD, K. Barr, C. Goates, J. Hernandez, S. Pathikonda, and L. Butler for access to field sites, and help with field sampling. We thank J. Neigel, S. Mopper and D. Johnson and anonymous reviewers for comments on an earlier version of this manuscript. This study was funded by U.S. Department of Defense under the Section 6.1 Basic Research Program and U.S. Army 6.2 Threatened and Endangered Species Program to RFL and PLL.

Supplementary material

10592_2011_235_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Alo D, Turner TF (2005) Effects of habitat fragmentation on effective population size in the endangered Rio Grande silvery minnow. Conserv Biol 19:1138–1148CrossRefGoogle Scholar
  2. Angelone S, Holderegger R (2009) Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. J Appl Ecol 46:879–887CrossRefGoogle Scholar
  3. Belkhir K, Borsa P, Chiki L, Raufaste N, Bonhomme F (2004) Genetix 4.05. logiciel sous windows TM pour la genetique des populations. Laboratoire genome, populations, interactions, CNRS UMR 5000. Universite de Montpellier II, MontpellierGoogle Scholar
  4. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  5. Born C, Hardy OJ, Chevallier MH, Ossari S, Atteke C, Wickings J, Hossaert-Mckey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050PubMedCrossRefGoogle Scholar
  6. Chevolot M, Ellis JR, Rijnsdorp AD, Stam WT, Olsen JL (2008) Temporal changes in allele frequencies but stable genetic diversity over the past 40 years in the Irish sea population of Thornback ray, raja clavata. Heredity 101:120–126PubMedCrossRefGoogle Scholar
  7. Crow JF, Denniston C (1988) Inbreeding and variance effective population numbers. Evolution 42:482–495CrossRefGoogle Scholar
  8. Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal forest. Biol Conserv 142:1560–1569CrossRefGoogle Scholar
  9. Ellegren H (1991) DNA typing of museum birds. Nature 354:113PubMedCrossRefGoogle Scholar
  10. Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386PubMedCrossRefGoogle Scholar
  11. Frankham R (1995a) Conservation genetics. Annu Rev Genet 29:305–327PubMedCrossRefGoogle Scholar
  12. Frankham R (1995b) Effective population-size adult-population size ratios in wildlife—a review. Genet Res 66:95–107CrossRefGoogle Scholar
  13. Frankham R (1995c) Inbreeding and extinction: a threshold effect. Conserv Biol 9:792–800CrossRefGoogle Scholar
  14. Frels D Jr (2006) Performance report. Kerr Wildlife Management Area, Hunt, p 8Google Scholar
  15. Goudet J (2002) FSTAT 2.9.3.2, a program to estimate and test gene diversities and fixation indices. http://www.unil.ch/izea/softwares/fstat.html. Accessed 25 April 2010
  16. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638PubMedGoogle Scholar
  17. Howeth JG, McGaugh SE, Hendrickson DA (2008) Contrasting demographic and genetic estimates of dispersal in the endangered coahuilan box turtle: a contemporary approach to conservation. Mol Ecol 17:4209–4221PubMedCrossRefGoogle Scholar
  18. Jordan MA, Snell HL (2008) Historical fragmentation of islands and genetic drift in populations of galapagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 17:1224–1237PubMedCrossRefGoogle Scholar
  19. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  20. Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885PubMedCrossRefGoogle Scholar
  21. Kroll JC (1980) Habitat requirements of the golden-cheeked warbler: management implications. J Range Manag 33:60–66CrossRefGoogle Scholar
  22. Lage C, Kornfield I (2006) Reduced genetic diversity and effective population size in an endangered Atlantic salmon (Salmo salar) population from Maine, USA. Conserv Genet 7:91–104CrossRefGoogle Scholar
  23. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494CrossRefGoogle Scholar
  24. Leberg PL (2002) Estimating allelic richness: Effects of sample size and bottlenecks. Mol Ecol 11:2445–2451PubMedCrossRefGoogle Scholar
  25. Leberg PL, Athrey GNR, Barr KR, Lindsay D, Lance R (2009) Implications of landscape alteration for the conservation of genetic diversity of endangered species. In: DeWoody JA, Bickham JW, Michler C, Nichols K, Rhodes OE, Woeste K (eds) Molecular insights into natural resource conservation and management. Cambridge University Press, Cambridge, p 392Google Scholar
  26. Lindsay DL, Barr KR, Lance R, Tweddale SA, Hayden TJ, Leberg PL (2008) Habitat fragmentation and genetic diversity of an endangered, migratory songbird, the golden-cheeked warbler (Dendroica chrysoparia). Mol Ecol 17:2122–2133PubMedCrossRefGoogle Scholar
  27. Martinez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486PubMedCrossRefGoogle Scholar
  28. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366PubMedGoogle Scholar
  29. Nei M, Tajima F (1981) Genetic drift and estimation of effective population-size. Genetics 98:625–640PubMedGoogle Scholar
  30. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  31. Nichols RA, Bruford MW, Groombridge JJ (2001) Sustaining genetic variation in a small population: evidence from the mauritius kestrel. Mol Ecol 10:593–602PubMedCrossRefGoogle Scholar
  32. Nunney L (1995) Measuring the ratio of effective population-size to adult numbers using genetic and ecological data. Evolution 49:389–392CrossRefGoogle Scholar
  33. Nunney L (2000) The limits to knowledge in conservation genetics—the value of effective population size. J Evolut Biol 32:179–194CrossRefGoogle Scholar
  34. Peak RG (2007) Forest edges negatively affect golden-cheeked warbler nest survival. Condor 109:628–637CrossRefGoogle Scholar
  35. Rappole JH, King DI, Diez J (2003) Winter- vs. breeding-habitat limitation for an endangered avian migrant. Ecol Appl 13:735–742CrossRefGoogle Scholar
  36. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  37. Reidy JL, Thompson FR, Peak RG (2009) Factors affecting golden-cheeked warbler nest survival in urban and rural landscapes. J Wildl Manag 73:407–413CrossRefGoogle Scholar
  38. Rodriguez-Munoz R, Mirol PM, Segelbacher G, Fernandez A, Tregenza T (2007) Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the southern edge of the species range. Conserv Genet 8:659–670CrossRefGoogle Scholar
  39. Sato T, Harada Y (2008) Loss of genetic variation and effective population size of Kirikuchi charr: implications for the management of small, isolated salmonid populations. Anim Conserv 11:153–159CrossRefGoogle Scholar
  40. Schmidly DJ, Sansom A (2002) Texas natural history: a century of change, 1st edn. Texas Tech University, LubbockGoogle Scholar
  41. Segelbacher G, Manel S, Tomiuk J (2008) Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao urogallus). Mol Ecol 17:2356–2367PubMedCrossRefGoogle Scholar
  42. Sperry JH, Peak RG, Cimprich DA, Weatherhead PJ (2008) Snake activity affects seasonal variation in nest predation risk for birds. J Avian Biol 39:379–383CrossRefGoogle Scholar
  43. USFWS (1992) Golden-cheeked warbler (Dendroica chrysoparia) recovery plan. U.S. Fish and Wildlife, Albuqurque, p 97Google Scholar
  44. USFWS (2004) Biological opinion, consultation number: 2-12-05-F-021. U.S. Fish and Wildlife Service, PennsylvaniaGoogle Scholar
  45. Valiére N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  46. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  47. Veit ML, Robertson RJ, Hamel PB, Friesen VL (2005) Population genetic structure and dispersal across a fragmented landscape in cerulean warblers (Dendroica cerulea). Conserv Genet 6:159–174CrossRefGoogle Scholar
  48. Wang J (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257PubMedCrossRefGoogle Scholar
  49. Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446PubMedGoogle Scholar
  50. Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conserv Genet 5:529–538CrossRefGoogle Scholar
  51. Young A, Clarke GM (2000) Conclusions and future directions: what do we know about the genetic and demographic effects of habitat fragmentation and where do we go from here? In: Young A, Clarke GM (eds) Genetics, demography and viability of fragmented populations, 1st edn. Cambridge University Press, Cambridge, pp 361–366CrossRefGoogle Scholar
  52. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418PubMedCrossRefGoogle Scholar
  53. Zartman CE, McDaniel SF, Shaw AJ (2006) Experimental habitat fragmentation increases linkage disequilibrium but does not affect genetic diversity or population structure in the Amazonian liverwort Radula flaccida. Mol Ecol 15:2305–2315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Giridhar Athrey
    • 1
    • 3
  • Denise L. Lindsay
    • 2
  • Richard F. Lance
    • 2
  • Paul L. Leberg
    • 1
  1. 1.Department of BiologyUniversity of LouisianaLafayetteUSA
  2. 2.Environmental LaboratoryU.S. Army Engineer Research and Development CenterVicksburgUSA
  3. 3.Vector Biology GroupTexas A&M UniversityCollege StationUSA

Personalised recommendations