Skip to main content

Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France

Abstract

Red deer have been subjected to anthropogenic interference for many centuries. Most populations are managed according to hunting schedules, some have been kept long-term in enclosures and other populations have been restocked with foreign deer. The red deer in the Brittany region of north-western France only occupy the largest forests in the region, reaching quite high densities in restricted areas. Here, we aimed to assess the extent of the genetic variability of the populations in four forest fragments and investigate their population genetic structure. We show that, despite relatively large expected heterozygosity values, these geographically isolated populations are genetically impoverished relative to individuals from large continuous forests in other parts of Western Europe. We provide evidence for population genetic structure with large genetic differentiation between geographically close populations, suggesting the absence of effective exchange between the forests. Using samples from the most likely source population, we show that at least two populations were non-indigenous. In order to limit further loss of genetic diversity, it should be a management objective to reduce isolation of the different forests, rather than further increase it by fences and hunting practices that could limit free movement of red deer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Beebee TJC, Rowe G (2000) Microsatellite analysis of natterjack toad Bufo calamita Laurenti populations: consequences of dispersal from a Pleistocene refugium. Biol J Linn Soc 69:367–381

    Article  Google Scholar 

  • Belkhir K (2004) Genetix 4.05.2. Laboratoire Génome et Populations, University of Montpellier II, Montpellier

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fernandez-de-Mera IG, Vicente J, Perez de la Lastra JM, Mangold AJ, Naranjo V, Fierro Y, de la Fuente J, Gortazar C (2009) Reduced major histocompatibility complex class II polymorphism in a hunter-managed isolated Iberian red deer population. J Zool 277:157–170

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Frantz AC, Tigel Pourtois J, Heuertz M, Schley L, Flamand MC, Krier A, Bertouille S, Chaumont F, Burke T (2006) Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol Ecol 15:3191–3203

    Article  PubMed  CAS  Google Scholar 

  • Frantz AC, Hamann JL, Klein F (2008) Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur J Wildl Res 54:44–52

    Article  Google Scholar 

  • Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Gortázar C, Ferroglio E, Höfle U, Fröhlich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guillot G, Leblois R, Coulon A, Frantz AC (2010) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756

    Article  Google Scholar 

  • Haanes H, Røed KH, Flagstad Ø, Rosef O (2010) Genetic structure in an expanding cervid population after population reduction. Conserv Genet 11:11–20

    Article  Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. C R Biol 326:S37–S42

    Article  PubMed  Google Scholar 

  • Hartl GB, Zachos FE, Nadlinger K, Ratkiewicz M, Klein F, Lang G (2005) Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implication for management and conservation. Mamm Biol 70:24–34

    Article  Google Scholar 

  • Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006a) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701

    Article  Google Scholar 

  • Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006b) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 270:479–487

    Article  Google Scholar 

  • Klein F (1990) La réintroduction du cerf Cervus elaphus. Rev Ecol (Terre Vie) Issue Suppl 5:131–134

    Google Scholar 

  • Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer population (Cervus elaphus). Conserv Genet 4:157–166

    Article  CAS  Google Scholar 

  • Kuehn R, Haller H, Schroeder W, Rottmann O (2004) Genetic roots of the red deer (Cervus elaphus) population in Eastern Switzerland. J Hered 95:136–143

    Article  PubMed  CAS  Google Scholar 

  • Langella O (2007) Populations 1.2.30: populations genetic software (individuals or populations distances, phylogenetic trees). France. http://bioinformatics.org/~tryphon/populations/

  • Leduc D, Klein F (2004) L’origine du cerf français de 1900 à nos jours. Faune Sauvage 264:27–29

    Google Scholar 

  • Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659

    Article  Google Scholar 

  • Martínez JG, Carranza J, Fernández-García JL, Sánchez-Prieto CB (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Wildl Manage 66:1273–1282

    Article  Google Scholar 

  • Mills LS (2007) Conservation of wildlife populations: demography, genetics and management. Blackwell, Oxford

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V (2008) Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 95:688–701

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genet 5:585–602

    Article  CAS  Google Scholar 

  • Pérez-Espona S, Pérez-Barberia FJ, Mcleod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996

    Article  PubMed  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Randi E (2005) Management of wild ungulate populations in Italy: captive-breeding, hybridisation and genetic consequences of translocation. Vet Res Commun 29(Suppl 2):71–75

    Article  PubMed  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647

    Article  Google Scholar 

  • Wasser SK, Shedlock AM, Comstock K, Ostrander EA, Mutayoba B, Stephens M (2004) Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc Natl Acad Sci USA 101:14847–14852

    Article  PubMed  CAS  Google Scholar 

  • Wasser SK, Mailand C, Booth R, Mutayoba B, Kisamo E, Clark B, Stephens M (2007) Using DNA to track the origin of the largest ivory seizure since the 1989 trade ban. Proc Natl Acad Sci USA 104:4228–4233

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Zachos FE, Althoff C, von Steynitz Y, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marie-Christine Eloy for her excellent technical assistance. This work was supported by grants from the Public Service of Wallonia (PSW), General Directorate for Agriculture, Natural Resources and Environment. Alain Frantz was supported by the NERC Biomolecular Analysis Facility of the Natural Environment Research Council, UK. We are indebted to all the people and institutions that provided us with samples including J.-P. Lefebvre, F. Graland, H. Chemin, L. Isebe, M. H. Labbe, M. Brunet, J.-M. Bloom; H. Chemin, C. Richard, D. Aine, N. Bon, H.-H. Seevagen, M. J. Henry, the E.A.R.L. « Les Compagnons de la Lande », the O.N.F. (National Forests Office) and the local Services of the Nature and Forest Department (General Directorate for Agriculture, Natural Resources and Environment of the Public Service of Wallonia). We are grateful to Dr. Frank Zachos and two anonymous reviewers for comments that improved the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Dellicour or M. C. Flamand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dellicour, S., Frantz, A.C., Colyn, M. et al. Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France. Conserv Genet 12, 1287–1297 (2011). https://doi.org/10.1007/s10592-011-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0230-0

Keywords

  • Cervus elaphus
  • Microsatellites
  • Conservation genetics
  • Population structure
  • Assignment tests