Conservation Genetics

, Volume 12, Issue 5, pp 1287–1297 | Cite as

Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France

  • S. DellicourEmail author
  • A. C. Frantz
  • M. Colyn
  • S. Bertouille
  • F. Chaumont
  • M. C. FlamandEmail author
Research Article


Red deer have been subjected to anthropogenic interference for many centuries. Most populations are managed according to hunting schedules, some have been kept long-term in enclosures and other populations have been restocked with foreign deer. The red deer in the Brittany region of north-western France only occupy the largest forests in the region, reaching quite high densities in restricted areas. Here, we aimed to assess the extent of the genetic variability of the populations in four forest fragments and investigate their population genetic structure. We show that, despite relatively large expected heterozygosity values, these geographically isolated populations are genetically impoverished relative to individuals from large continuous forests in other parts of Western Europe. We provide evidence for population genetic structure with large genetic differentiation between geographically close populations, suggesting the absence of effective exchange between the forests. Using samples from the most likely source population, we show that at least two populations were non-indigenous. In order to limit further loss of genetic diversity, it should be a management objective to reduce isolation of the different forests, rather than further increase it by fences and hunting practices that could limit free movement of red deer.


Cervus elaphus Microsatellites Conservation genetics Population structure Assignment tests 



We thank Marie-Christine Eloy for her excellent technical assistance. This work was supported by grants from the Public Service of Wallonia (PSW), General Directorate for Agriculture, Natural Resources and Environment. Alain Frantz was supported by the NERC Biomolecular Analysis Facility of the Natural Environment Research Council, UK. We are indebted to all the people and institutions that provided us with samples including J.-P. Lefebvre, F. Graland, H. Chemin, L. Isebe, M. H. Labbe, M. Brunet, J.-M. Bloom; H. Chemin, C. Richard, D. Aine, N. Bon, H.-H. Seevagen, M. J. Henry, the E.A.R.L. « Les Compagnons de la Lande », the O.N.F. (National Forests Office) and the local Services of the Nature and Forest Department (General Directorate for Agriculture, Natural Resources and Environment of the Public Service of Wallonia). We are grateful to Dr. Frank Zachos and two anonymous reviewers for comments that improved the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10592_2011_230_MOESM1_ESM.doc (134 kb)
Supplementary material 1 (DOC 134 kb)


  1. Beebee TJC, Rowe G (2000) Microsatellite analysis of natterjack toad Bufo calamita Laurenti populations: consequences of dispersal from a Pleistocene refugium. Biol J Linn Soc 69:367–381CrossRefGoogle Scholar
  2. Belkhir K (2004) Genetix 4.05.2. Laboratoire Génome et Populations, University of Montpellier II, MontpellierGoogle Scholar
  3. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  4. Fernandez-de-Mera IG, Vicente J, Perez de la Lastra JM, Mangold AJ, Naranjo V, Fierro Y, de la Fuente J, Gortazar C (2009) Reduced major histocompatibility complex class II polymorphism in a hunter-managed isolated Iberian red deer population. J Zool 277:157–170CrossRefGoogle Scholar
  5. Frankham R, Ballou JD, Briscoe DA (2002) Conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  6. Frantz AC, Tigel Pourtois J, Heuertz M, Schley L, Flamand MC, Krier A, Bertouille S, Chaumont F, Burke T (2006) Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol Ecol 15:3191–3203PubMedCrossRefGoogle Scholar
  7. Frantz AC, Hamann JL, Klein F (2008) Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur J Wildl Res 54:44–52CrossRefGoogle Scholar
  8. Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  9. Gortázar C, Ferroglio E, Höfle U, Fröhlich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256CrossRefGoogle Scholar
  10. Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  11. Guillot G, Leblois R, Coulon A, Frantz AC (2010) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756CrossRefGoogle Scholar
  12. Haanes H, Røed KH, Flagstad Ø, Rosef O (2010) Genetic structure in an expanding cervid population after population reduction. Conserv Genet 11:11–20CrossRefGoogle Scholar
  13. Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  14. Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. C R Biol 326:S37–S42PubMedCrossRefGoogle Scholar
  15. Hartl GB, Zachos FE, Nadlinger K, Ratkiewicz M, Klein F, Lang G (2005) Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implication for management and conservation. Mamm Biol 70:24–34CrossRefGoogle Scholar
  16. Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006a) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701CrossRefGoogle Scholar
  17. Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006b) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 270:479–487CrossRefGoogle Scholar
  18. Klein F (1990) La réintroduction du cerf Cervus elaphus. Rev Ecol (Terre Vie) Issue Suppl 5:131–134Google Scholar
  19. Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer population (Cervus elaphus). Conserv Genet 4:157–166CrossRefGoogle Scholar
  20. Kuehn R, Haller H, Schroeder W, Rottmann O (2004) Genetic roots of the red deer (Cervus elaphus) population in Eastern Switzerland. J Hered 95:136–143PubMedCrossRefGoogle Scholar
  21. Langella O (2007) Populations 1.2.30: populations genetic software (individuals or populations distances, phylogenetic trees). France.
  22. Leduc D, Klein F (2004) L’origine du cerf français de 1900 à nos jours. Faune Sauvage 264:27–29Google Scholar
  23. Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659CrossRefGoogle Scholar
  24. Martínez JG, Carranza J, Fernández-García JL, Sánchez-Prieto CB (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Wildl Manage 66:1273–1282CrossRefGoogle Scholar
  25. Mills LS (2007) Conservation of wildlife populations: demography, genetics and management. Blackwell, OxfordGoogle Scholar
  26. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  27. Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V (2008) Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 95:688–701CrossRefGoogle Scholar
  28. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  29. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  30. Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genet 5:585–602CrossRefGoogle Scholar
  31. Pérez-Espona S, Pérez-Barberia FJ, Mcleod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996PubMedCrossRefGoogle Scholar
  32. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  34. Randi E (2005) Management of wild ungulate populations in Italy: captive-breeding, hybridisation and genetic consequences of translocation. Vet Res Commun 29(Suppl 2):71–75PubMedCrossRefGoogle Scholar
  35. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201PubMedCrossRefGoogle Scholar
  36. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  37. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  38. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  39. Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647CrossRefGoogle Scholar
  40. Wasser SK, Shedlock AM, Comstock K, Ostrander EA, Mutayoba B, Stephens M (2004) Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc Natl Acad Sci USA 101:14847–14852PubMedCrossRefGoogle Scholar
  41. Wasser SK, Mailand C, Booth R, Mutayoba B, Kisamo E, Clark B, Stephens M (2007) Using DNA to track the origin of the largest ivory seizure since the 1989 trade ban. Proc Natl Acad Sci USA 104:4228–4233PubMedCrossRefGoogle Scholar
  42. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  43. Zachos FE, Althoff C, von Steynitz Y, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut des Sciences de la VieUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.NERC Biomolecular Analysis Facility-Sheffield, Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
  3. 3.CNRS-UMR 6553Université de Rennes 1PaimpontFrance
  4. 4.Département de l’Etude du Milieu naturel et agricoleService Public de WallonieGemblouxBelgium
  5. 5.Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations