Skip to main content

Signatures of demographic bottlenecks in European wolf populations

Abstract

Monitoring the loss of genetic diversity in wild populations after a bottleneck event is a priority in conservation and management plans. Here, we used diverse molecular markers to search for signatures of demographic bottlenecks in two wolf populations; an isolated population from the Iberian Peninsula and a non-isolated population from European Russia. Autosomal, mtDNA and Y-chromosomal diversity and the effective population size (Ne) were significantly lower in the Iberian population. Neutrality tests using mtDNA sequences, such as R2, Fu and Li’s F*, Tajima’s D and Fu’s Fs, were positively significant in the Iberian population, suggesting a population decline, but were not significant for the Russian population, likely due to its larger effective population size. However, three tests using autosomal data confirmed the occurrence of the genetic bottleneck in both populations. The M-ratio test was the only one providing significant results for both populations. Given the lack of consistency among the different tests, we recommend using multiple approaches to investigate possible past bottlenecks. The small effective population size (about 50) in the Iberian Peninsula compared to the presumed extant population size could indicate that the bottleneck was more powerful than initially suspected or an overestimation of the current population. The risks associated with small effective population sizes suggest that the genetic change in this population should be closely monitored in the future. On the other hand, the relatively small effective population size for Russian wolves (a few hundred individuals) could indicate some fragmentation, contrary to what is commonly assumed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Álvares FI, Barroso JC, Blanco J et al. (2005) Wolf status and conservation in the Iberian Peninsula. International Congress Frontiers of Wolf Recovery. Colorado Springs, Colorado, October 2005

  2. Aspi J, Roininen M, Ruokonen M, Kojola I, Vilà C (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1579

    PubMed  Article  CAS  Google Scholar 

  3. Aspi J, Roininen M, Kiiskilä J, Ruokonen M, Kojola I, Bljudnik L, Danilov P, Heikkinen S, Pulliainen E (2009) Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland. Conserv Genet 10:815–826

    Article  CAS  Google Scholar 

  4. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  5. Bannasch DL, Bannasch MJ, Ryun JR, Famula TR, Pedersen NC (2005) Y chromosome haplotype analysis in purebred dogs. Mamm Genome 16:273–280

    PubMed  Article  Google Scholar 

  6. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1999) GENETIX, Logiciel sous Windows TM pour la Génétique des Populations. Laboratoire Génôme et Populations, CNRS UPR 9060. Université de Montpellier II, Montpellier, France

    Google Scholar 

  7. Benzecri J (1973) L’Analyse des Données. Tome I: la Taxinomie; Tome II: l’Analyse des Correspondances. Dunod Press, Paris

    Google Scholar 

  8. Bibikov DI (1994) Wolf problem in Russia. Lutreola 3:10–14

    Google Scholar 

  9. Bibikov DI, Ovsyannikov NG, Filimonov AN (1983) The status and management of the wolf population in the USSR. Acta Zoologica Fennica 174:269–271

    Google Scholar 

  10. Boitani L (2003) Wolf conservation and recovery. In: Mech LD, Boitani L (eds) Wolves. Behavior, ecology and conservation. University of Chicago Press, Chicago, pp 317–340

    Google Scholar 

  11. Borisov BP, Gibet LA, Gubar JP et al. (1992) Senior management of the hunting facilities economy at RSFSR. The central research laboratory of the hunting facilities economy and reserves. Moscow (in Russian)

  12. Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2462

    PubMed  Article  CAS  Google Scholar 

  13. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    PubMed  Article  CAS  Google Scholar 

  14. Carmichael LE, Krizan J, Nagy JA, Fuglei E, Dumond M, Johnson D, Veitch A, Berteaux D, Strobeck C (2007) Historical and ecological determinants of genetic structure in artic canids. Mol Ecol 16:3466–3483

    PubMed  Article  CAS  Google Scholar 

  15. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  16. England PR, Luikart G, Waples RS (2010) Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conserv Genet 11:2425–2430

    Article  Google Scholar 

  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    PubMed  Article  CAS  Google Scholar 

  18. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    PubMed  Article  CAS  Google Scholar 

  19. Fay JC, Wu CI (1999) A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol Biol Evol 16:1003–1005

    PubMed  CAS  Google Scholar 

  20. Flagstad ∅, Walker CW, Vilà C, Sundqvist AK, Fernholm B, Hufthammer AK, Wiig ∅, Koyola I, Ellegren H (2003) Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Mol Ecol 12:869–880

    PubMed  Article  CAS  Google Scholar 

  21. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for the canine genetic mapping. Mamm Genome 7:359–362

    PubMed  Article  CAS  Google Scholar 

  22. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  23. Fredholm M, Wintero AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm Genome 6:11–18

    PubMed  Article  CAS  Google Scholar 

  24. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    PubMed  Article  CAS  Google Scholar 

  25. Goudet J (2000) FSTAT version 2.9.3.2. Computer package for PCs. Institute of Ecology, Lausane, Switzerland

    Google Scholar 

  26. Grande del Brío R (1984) El lobo Ibérico Biología y mitología. Editorial Hermann Blume, Madrid

    Google Scholar 

  27. Gubar JP (1996) The wolf in Russia caught between hunters and environmentalists. Russ Conserv News 8:19–20

    Google Scholar 

  28. Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    PubMed  Article  CAS  Google Scholar 

  29. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132(2):583–589

    PubMed  CAS  Google Scholar 

  30. International Union for Conservation of Nature (IUCN) (1973) Red list of threatened species. http://www.iucnredlist.org/

  31. Keller LF, Jeffery KJ, Arcese P et al (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond 268:1387–1394

    Article  CAS  Google Scholar 

  32. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  33. Koblmüller S, Nord M, Wayne RK, Leonard JA (2009) Origin and status of the Great Lakes wolf. Mol Ecol 18:2313–2326

    PubMed  Article  Google Scholar 

  34. Lomanov IK, Borisov BP, Bolodnina OA et al (1995) The hunting animals of Russia. Department on protection and rational use. State service of the account of the hunting resources, Moscow (in Russian)

    Google Scholar 

  35. Lomanov IK, Borisov BP, Bolodnina OA et al (2000) The hunting animals of Russia. State service of the account of the hunting resources. Ministry of agriculture of the Russian Federation, Moscow (in Russian)

    Google Scholar 

  36. Lucchini V, Galov A, Randi E (2004) Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol 13:523–536

    PubMed  Article  CAS  Google Scholar 

  37. Luikart G, Cornuet JM (1997) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Google Scholar 

  38. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    PubMed  Article  CAS  Google Scholar 

  39. Musiani M, Leonard JA, Cluff HD, Gates CC, Mariani S, Paquet PC, Vilà C, Wayne RK (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170

    PubMed  Article  CAS  Google Scholar 

  40. Ostrander EA, Mapa FA, Yee M, Rine J (1995) One hundred and one simple sequence repeats-based markers for the canine genome. Mamm Genome 6:192–195

    PubMed  Article  CAS  Google Scholar 

  41. Ovsyanikov N, Bibikov DI, Bologov VV (1998) Battling with wolves: Russia’s decades-old struggle to manage its fluctuating wolf population. Int Wolf Center Publ 8(1):16–19

    Google Scholar 

  42. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  43. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size, version 1.3. Queensland Government, Department of Primary Industries and Fisheries, Australia

    Google Scholar 

  44. Pilot M, Jedrzejewski W, Branicki W et al (2006) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553

    PubMed  Article  CAS  Google Scholar 

  45. Ramírez O, Altet L, Enseñat C, Vilà C, Sánchez A, Ruiz A (2006) Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conserv Genet 7:861–878

    Article  Google Scholar 

  46. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19(12):2092–2100

    PubMed  CAS  Google Scholar 

  47. Randi E, Lucchini V, Christensen MF et al (2000) Mitochondrial DNA variability in Italian and East European wolves: detecting the consequences of small population size and hybridization. Conserv Biol 14:464–473

    Article  Google Scholar 

  48. Reed DH, Briscoe DA, Frankham R (2002) Inbreeding and extinction: the effect of environmental stress and lineage. Conserv Genet 3:301–307

    Article  CAS  Google Scholar 

  49. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    PubMed  Article  CAS  Google Scholar 

  50. Saccheri IJ, Wilson IJ, Nichols RA, Bruford MW, Brakefield PM (1999) Inbreeding of bottlenecked butterfly populations: estimation using the likelihood of changes in marker allele frequencies. Genetics 151:1053–1063

    PubMed  CAS  Google Scholar 

  51. Sastre N, Francino O, Lampreave G et al. (2007) Seguimiento del lobo (Canis lupus) en Cataluña mediante el análisis genético de muestras no invasivas. In: XXXVI Congreso de la Sociedad Española de Genética. SEG 2007, León, p 127

  52. Sastre N, Francino O, Lampreave G et al (2009) Sex identification of wolf (Canis lupus) using non-invasive simples. Conserv Genet 10:555–558

    Article  CAS  Google Scholar 

  53. Schneider S, Roessli D, Excoffier L (2006) Arlequin ver 3.01: An integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab, University of Berne, Switzerland

    Google Scholar 

  54. Sundqvist AK, Ellegren H, Olivier M, Vilà C (2001) Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Mol Ecol 10:1959–1966

    PubMed  Article  CAS  Google Scholar 

  55. Valière N, Fumagalli L, Gielly L et al (2003) Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Anim Conserv 6:83–92

    Article  Google Scholar 

  56. Valverde JA (1971) El lobo español. Montes 159:228–241

    Google Scholar 

  57. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  58. Vilà C (2010) Viabilidad de las poblaciones ibéricas de lobos. Enseñanzas de la genética para la conservación. In: Fernández-Gil A, Álvares F, Vilà C, Ordiz A (eds) Los lobos de la Península Ibérica. Propuestas para el diagnóstico de sus poblaciones. ASCEL, Palencia, Spain, pp 157–171

    Google Scholar 

  59. Vilà C, Amorim IR, Leonard JA et al (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 8:2089–2103

    PubMed  Article  Google Scholar 

  60. Vilà C, Sundqvist AK, Flagstad ∅ et al (2003) Rescue of a severely bottlenecked wolf Canis lupus population by a single immigrant. Proc R Soc 270:91–97

    Article  Google Scholar 

  61. Waples R (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  62. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

Samples were moved from the Russian Federation to Spain according to CITES and VETER requirements. Animals were not killed for the purpose of this manuscript. We are grateful to the personnel from the Central Forest National Reserve (Zapovednik, Russia), especially to Pavel Koravlov, for supplying wolf tooth samples. We thank all the personnel from the “Consejería de Medio Ambiente, Junta de Castilla y León”, especially to Agustín Noriega, for supplying wolf tissue samples. Thanks are due also to Sebastian Ramos-Onsins and Joaquim Casellas for valuable comments on the analyses, to Miki Monguilod for IT support, to Gary Walker for linguistic revision and two anonymous reviewers for helpful comments on the manuscript. Carles Vilà work was supported by the “Programa para la Captación del Conocimiento para Andalucía” (Andalusian Government, Spain). Financial support was provided by the “Servei Veterinari de Genètica Molecular” (SVGM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalia Sastre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sastre, N., Vilà, C., Salinas, M. et al. Signatures of demographic bottlenecks in European wolf populations. Conserv Genet 12, 701–712 (2011). https://doi.org/10.1007/s10592-010-0177-6

Download citation

Keywords

  • Canis lupus
  • mtDNA
  • Neutrality
  • Y-chromosome
  • Autosomal microsatellites
  • Effective population size
  • European wolf