Conservation Genetics

, Volume 12, Issue 2, pp 569–576 | Cite as

Estimating inbreeding depression in natural plant populations using quantitative and molecular data

  • Lázaro José ChavesEmail author
  • Roland Vencovsky
  • Rossana Serrato Mendonça Silva
  • Mariana Pires de Campos Telles
  • Maria Imaculada Zucchi
  • Alexandre Siqueira Guedes Coelho
Research Article


Inbreeding and inbreeding depression are important issues in the biology and conservation of natural plant and animal populations, primarily when subpopulation sizes are reduced due to habitat fragmentation. In this study, we propose a method for estimating inbreeding depression in progenies of natural plant populations, combining the estimation of the fixation index by codominant markers with the experimental evaluation of quantitative traits. Our technique estimates apparent inbreeding depression in structured natural populations using the linear regression of phenotypic means on the inbreeding coefficients estimated with codominant markers. This method was applied to data from 112 maternal progenies of 10 natural subpopulations of Eugenia dysenterica DC, a fruiting tree species from the Brazilian savanna (Cerrado). The results show that the proposed method was efficient at detecting the presence of inbreeding depression for seedling emergence and initial growth traits in the species. This corroborates the importance of maintaining high levels of heterozygosity for in situ conservation or genetic restoration of natural populations.


Inbreeding depression Eugenia dysenterica Endogamy Heterozygosity-fitness correlation Brazilian Cerrado Fixation index 



We are grateful to RV Naves for helping in field collection and to JAF Diniz-Filho and two anonymous reviewers for helpful comments and suggestions on the manuscript. This work was supported by a senior postdoctoral grant to LJ Chaves and research fellowships to LJ Chaves, R Vencovsky, MPC Telles and ASG Coelho, from the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brazil.


  1. Aguiar AV, Vencovsky R, Chaves LJ, Moura MF, Morais LK (2009) Genetics and expected selection gain for growth traits in Eugenia dysenterica DC populations. Bragantia 68:629–637CrossRefGoogle Scholar
  2. Alho JS, Lillandt B, Jaari S, Merilä J (2009) Multilocus heterozygosity and inbreeding in the Siberian jay. Conserv Genet 10:605–609CrossRefGoogle Scholar
  3. Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265PubMedCrossRefGoogle Scholar
  4. Ayroles JF, Hughes KA, Rowe KC, Reedy MM, Rodriguez-Zaz SL, Drnevich JM, Cáceres CE, Paige KN (2009) A genomewide assessment of inbreeding depression: gene number, function and mode of action. Conserv Biol 23:920–930PubMedCrossRefGoogle Scholar
  5. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031PubMedCrossRefGoogle Scholar
  6. Chapman JR, Nakagawa S, Coltman DW, Slates J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765PubMedCrossRefGoogle Scholar
  7. Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340PubMedCrossRefGoogle Scholar
  8. Cockerham CC (1973) Analysis of gene frequencies. Genetics 74:679–700PubMedGoogle Scholar
  9. Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Pub Co, MineapolisGoogle Scholar
  10. Falconer DS, MacKay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, HarlowGoogle Scholar
  11. Hansson B, Westerberg L (2008) Heterozigosity-fitness correlations within inbreeding classes: local or genome-wide effects? Conserv Genet 9:73–83CrossRefGoogle Scholar
  12. Hedrick W (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636CrossRefGoogle Scholar
  13. Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Plalypodium elegans (Fabaceae, Papilionoideae). Evolution 57:518–526PubMedGoogle Scholar
  14. Husband BC, Schemke DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70CrossRefGoogle Scholar
  15. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends in Ecol Evol 17:230–241CrossRefGoogle Scholar
  16. Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates Inc, SunderlandGoogle Scholar
  17. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  18. Nei M (1987) Molecular evolutionary genetics. Columbia Univ Press, New YorkGoogle Scholar
  19. Rawlings JO (1988) Applied regression analysis: a research tool. The Wadsworth and Books, Pacific GroveGoogle Scholar
  20. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  21. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman and Co, New YorkGoogle Scholar
  22. Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill Book Co, New YorkGoogle Scholar
  23. Telles MPC, Coelho ASG, Chaves LJ, Diniz-Filho JAF, Valva FD (2003) Genetic diversity and population structure of Eugenia dysenterica DC. (“cagaiteira”- Myrtaceae) in Central Brazil: spatial analysis and implications for conservation and management. Conserv Genet 4:685–695CrossRefGoogle Scholar
  24. Trindade MG, Chaves LJ (2005) Genetic structure of natural Eugenia dysenterica DC (Myrtaceae) populations in northeastern Goiás, Brazil, acessed by morfhological traits and RAPD markers. Genet Mol Biol 28:407–413CrossRefGoogle Scholar
  25. Wright S (1951) The genetical structure of population. Ann Eugenics 15:395–420Google Scholar
  26. Wright LI, Tregenza T, Hosken DJ (2008) Inbreeding, inbreeding depression and extinction. Conserv Genet 9:833–843CrossRefGoogle Scholar
  27. Zucchi MI, Brondani RPV, Pinheiro JB, Chaves LJ, Coelho ASG, Vencovsky R (2003) Genetic structure and gene flow in Eugenia dysenterica DC in the Brasilian Cerrado utilizing SSR markers. Genet Mol Biol 26:449–457CrossRefGoogle Scholar
  28. Zucchi MI, Pinheiro JB, Chaves LJ, Coelho ASG, Couto MA, Morais LK, Vencovsky R (2005) Genetic structure and gene flow of Eugenia dysenterica natural populations. Pesq Agropec Bras 40:975–980CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lázaro José Chaves
    • 1
    Email author
  • Roland Vencovsky
    • 2
  • Rossana Serrato Mendonça Silva
    • 3
  • Mariana Pires de Campos Telles
    • 1
  • Maria Imaculada Zucchi
    • 4
  • Alexandre Siqueira Guedes Coelho
    • 1
  1. 1.Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Departamento de GenéticaEsalq/USPPiracicabaBrazil
  3. 3.SeagroGoiâniaBrazil
  4. 4.Instituto Agronômico do Estado de São PauloPiracicabaBrazil

Personalised recommendations