Advertisement

Conservation Genetics

, Volume 12, Issue 2, pp 557–567 | Cite as

Phylogeography, genetic structure, and gene flow in the endemic freshwater shrimp Palaemonetes suttkusi from Cuatro Ciénegas, Mexico

  • Johel Chaves-Campos
  • Steven G. Johnson
  • Francisco J. García de León
  • C. Darrin HulseyEmail author
Research Article

Abstract

The valley of Cuatro Ciénegas in Mexico has the highest degree of local endemicity of any habitat in North America. A large number of endemic aquatic species occur both in the Cuatro Ciénegas basin and in the upper parts of the Río Salado de los Nadadores drainage, located immediately to the east of the valley. No natural surface flow occurs between these basins but artificial canals connect both areas. It is not clear whether the sharing of endemics between the Cuatro Ciénegas basin and the Río Salado is due to migration through canals. We conducted a phylogeographic study of mitochondrial haplotypes of the endemic shrimp Palaemonetes suttkusi to determine the evolutionary distinctiveness of the population found in Río Salado. We discovered that P. suttkusi likely has occurred naturally in both basins well into the distant past. Based on molecular clock analyses of the COI gene, the populations in the Río Salado and much of the Cuatro Ciénegas basin likely began diverging from each other between 1.9 and 11.2 Myr ago. The general levels of divergence are substantial but our results suggest there has also likely been recent gene flow between these basins. This is consistent with migration through human-made canals, but also consistent with the occurrence of natural gene flow during intermittent wet periods in the past million years. We also found significant differentiation of the Pozas Azules area from the rest of the Cuatro Ciénegas basin, a finding that is concordant with several phylogeographic studies on other aquatic endemics in Cuatro Ciénegas. We recommend that the upper parts of the Río Salado, the Pozas Azules area, and the rest of the Cuatro Ciénegas basin should each be considered independent evolutionarily significant units for conservation, and that migration of species through human-made canals should be monitored and controlled.

Keywords

Phylogeography mtDNA variation Gene flow Conservation genetics Evolutionary significant units Shrimp 

Notes

Acknowledgments

We thank Phillip Hollingsworth and Lyndon Coghill for field assistance, DESUVALLE A.C. (especially Leonardo Vásquez, Eduardo Cordero and Alma Zertuche) and PRONATURA A. C. (Isabel Morán and Perla Vásquez) for logistic support, and two anonymous reviewers for comments on an earlier version of this manuscript. C. D. Hulsey was supported by the University of Tennessee, Knoxville. The University of New Orleans provided support to S. G. Johnson and J. Chaves-Campos. The CIBNOR provided support to F. J. García de León. We thank the Mexican government for providing us with permits (Permiso de Pesca de Fomento N° DAPA/2/130409/0961 and DAN-01202).

References

  1. Bandelt HJ, Forster P, Rohl A (1999) Median joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  2. Barlow GW (1958) Daily movements of desert pupfish, Cyprinodon macularius, in shore pools of the Salton Sea, California. Ecology 39:580–587CrossRefGoogle Scholar
  3. Butzer KW, Abbott JT, Frederick CD, Lehman PH, Cordova CE, Oswald JF (2008) Soil geomorphology and “wet” cycles in the Holocene record of north-central Mexico. Geomorphology 101:237–277. doi: 10.1016/j.geomorph.2008.06.005 CrossRefGoogle Scholar
  4. Carini G, Hughes JM (2004) Population structure of Macrobrachium australiense (Decapoda: Palaemonidae) in western Queensland, Australia: the role of contemporary and historical processes. Heredity 93:350–363. doi: 10.1038/sj.hdy.6800510 PubMedCrossRefGoogle Scholar
  5. Carson EW, Dowling TE (2006) Influence of hydrogeographic history and hybridization on the distribution of genetic variation in the pupfishes Cyprinodon atrorus and C. bifasciatus. Mol Ecol 15:667–679. doi: 10.1111/j.1365-294X.2005.02763.x PubMedCrossRefGoogle Scholar
  6. Castiglia PJ, Fawcett PJ (2006) Large Holocene lakes and climate change in the Chihuahuan desert. Geology 34:113–116CrossRefGoogle Scholar
  7. Cole GA (1984) Crustacea from the bolson of Cuatro Ciénegas, Cohauila, Mexico. J Ariz-Nev Acad Sci 19:3–12Google Scholar
  8. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295PubMedGoogle Scholar
  9. Drummond AJ, Rambaut A (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi: 21410.1186/1471-2148-7-214 PubMedCrossRefGoogle Scholar
  10. Elliott JM (2003) A comparative study of the dispersal of 10 species of stream invertebrates. Freshw Biol 48:1652–1668CrossRefGoogle Scholar
  11. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  12. Fluxus Technology Ltd (2009) Network 4.5.1.6. fluxus-engineering.comGoogle Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  14. Furlong JN, Ivey J, Barrow J, Moya M, O’Quinn R (2007) History and impacts of levees in the lower Río Grande valley. In: Roger JR (ed) Environmental and water resources: milestones in engineering history. American Society of Civil Engineers, Reston, VAGoogle Scholar
  15. Hendrickson DA, Marks JC, Moline AB, Dinger E, Cohen AE (2008) Combining ecological research and conservation: a case study in Cuatro Ciénegas, Coahuila, Mexico. In: Stevens LE, Meretsky VJ (eds) Aridland springs in North America: ecology and conservation. The University of Arizona Press, Tucson, AZGoogle Scholar
  16. Hershler R (1984) The hydrobiid snails (Gastropoda: Rissoacea) of the Cuatro Ciénegas basin: systematic relationships and ecology of a unique fauna. J Ariz-Nev Acad Sci 19:61–76Google Scholar
  17. Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905–920. doi: 10.1093/molbev/msp296 PubMedCrossRefGoogle Scholar
  18. Howeth JG, McGaugh SE, Hendrickson DA (2008) Contrasting demographic and genetic estimates of dispersal in the endangered Coahuilan box turtle: a contemporary approach to conservation. Mol Ecol 17:4209–4221. doi: 10.1111/j.1365-294X.2008.03904.x PubMedCrossRefGoogle Scholar
  19. Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102PubMedGoogle Scholar
  20. Johnson SG (2005) Age, phylogeography and population structure of the microendemic banded spring snail, Mexipyrgus churinceanus. Mol Ecol 14:2299–2311. doi: 10.1111/j.1365-294X.2005.02580.x PubMedCrossRefGoogle Scholar
  21. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  22. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc B 265:2257–2263CrossRefGoogle Scholar
  23. Lack JB, Pfau RS, Wilson GM (2010) Demographic history and incomplete lineage sorting obscure population genetic structure of the Texas mouse (Peromyscus attwateri). J Mammal 91:314–325. doi: 10.1644/09-mamm-a-242.1 CrossRefGoogle Scholar
  24. Lee CL, Fielder DR (1984) Swimming response to water current stimulus in the freshwater prawn, Macrobrachium australiense Holthuis, 1950. Crustaceana 46:249–256CrossRefGoogle Scholar
  25. Metcalfe S, Say A, Black S, McCulloch R, O’Hara S (2002) Wet conditions during the last glaciation in the Chihuahuan desert, Alta Babicora basin, Mexico. Quat Res 57:91–101. doi: 10.1006/qres.2001.2292 CrossRefGoogle Scholar
  26. Miller RR, Minckley WL (1963) Xiphophorus gordoni, a new species of platyfish from Coahuila, Mexico. Copeia 1963:538–546CrossRefGoogle Scholar
  27. Minckley WL (1969) Environments of the Bolsón of Cuatro Ciénegas, Coahuila, México. Sci Ser Univ Tex, El Paso Tex 2:1–65Google Scholar
  28. Minckley TA, Jackson ST (2008) Ecological stability in a changing world? Reassessment of the palaeoenvironmental history of Cuatro Ciénegas, Mexico. J Biogeogr 35:188–190. doi: 10.1111/j.1365-2699.2007.01829.x CrossRefGoogle Scholar
  29. Moritz C (1994) Defining evolutionary significant units for conservation. TREE 9:373–375PubMedGoogle Scholar
  30. Posada D (2008) Jmodeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. doi: 10.1093/molbev/msn083 PubMedCrossRefGoogle Scholar
  31. Rambaut A, Drummond AJ (2009) Tracer v1.5. http://beast.Bio.Ed.Ac.Uk/tracer
  32. Rodríguez-Almaraz GA, Gonzalez-Aguilar JA, Mendoza-Alfaro R (1997) Biological and ecological notes of Palaemonetes suttkusi (Crustacea: Palaemonidae) from Cuatro Ciénegas basin, Coahuila, Mexico. Southwest Nat 42:501–503Google Scholar
  33. Rodríguez-Martínez RI (2004) Diversidad Genética evaluada mediante marcadores mitocondriales y nucleares en poblaciones de Micropterus salmoides en el Noreste de México. MS Thesis. Instituto Tecnológico de Ciudad Victoria, Tamaulipas, MéxicoGoogle Scholar
  34. Schneider DW, Lyons J (1993) Dynamics of upstream migration in two species of tropical freshwater snails. J N Am Benthol Soc 12:3–16CrossRefGoogle Scholar
  35. Sharma S, Hughes JM (2009) Genetic structure and phylogeography of freshwater shrimps (Macrobrachium australiense and Macrobrachium tolmerum): the role of contemporary and historical events. Mar Freshw Res 60:541–553. doi: 10.1071/mf07235 CrossRefGoogle Scholar
  36. Smith GI (1984) Paleohydrologic regimes in the southwestern great basin, 0–3.2 my ago, compared with other long records of “global” climate. Quat Res 22:1–17CrossRefGoogle Scholar
  37. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103:6565–6570PubMedCrossRefGoogle Scholar
  38. Souza V, Eguiarte LE, Siefert J, Elser JJ (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol 6:559–564PubMedCrossRefGoogle Scholar
  39. Stein BA, Kutner LS, Adams JS (2000) Precious heritage: the status of biodiversity in the United States. Oxford University Press, OxfordGoogle Scholar
  40. Strenth NE (1976) A review of the systematics and zoogeography of the freshwater species of Palaemonetes Heller of North America (Crustacea: Decapoda). Smithsonian Contrib Zool 278:1–27Google Scholar
  41. Strenth NE (1994) A new species of Palaemonetes (Crustacea, Decapoda, Palaemonidae) from northeastern Mexico. Proc Biol Soc Wash 107:291–295Google Scholar
  42. Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18:1001–1013PubMedGoogle Scholar
  43. Sutton RJ (2002) Summer movements of desert pupfish among habitats at the Salton Sea. Hydrobiologia 473:223–228CrossRefGoogle Scholar
  44. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276PubMedCrossRefGoogle Scholar
  45. Zaksek V, Sket B, Gottstein S, Franjevic D, Trontelj P (2009) The limits of cryptic diversity in groundwater: phylogeography of the cave shrimp Troglocaris anophthalmus (Crustacea: Decapoda: Atyidae). Mol Ecol 18:931–946. doi: 10.1111/j.1365-294X.2008.04061.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Johel Chaves-Campos
    • 1
  • Steven G. Johnson
    • 1
  • Francisco J. García de León
    • 2
  • C. Darrin Hulsey
    • 3
    Email author
  1. 1.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA
  2. 2.Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del NoroesteLa PazMexico
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of Tennessee, KnoxvilleKnoxvilleUSA

Personalised recommendations