Conservation Genetics

, Volume 12, Issue 2, pp 527–542 | Cite as

Population structure and genetic diversity of greater sage-grouse (Centrocercus urophasianus) in fragmented landscapes at the northern edge of their range

  • Krista L. BushEmail author
  • Christopher K. Dyte
  • Brendan J. Moynahan
  • Cameron L. Aldridge
  • Heather S. Sauls
  • Angela M. Battazzo
  • Brett L. Walker
  • Kevin E. Doherty
  • Jason Tack
  • John Carlson
  • Dale Eslinger
  • Joel Nicholson
  • Mark S. Boyce
  • David E. Naugle
  • Cynthia A. Paszkowski
  • David W. Coltman
Research Article


Range-edge dynamics and anthropogenic fragmentation are expected to impact patterns of genetic diversity, and understanding the influence of both factors is important for effective conservation of threatened wildlife species. To examine these factors, we sampled greater sage-grouse (Centrocercus urophasianus) from a declining, fragmented region at the northern periphery of the species’ range and from a stable, contiguous core region. We genotyped 2,519 individuals at 13 microsatellite loci from 104 leks in Alberta, Saskatchewan, Montana, and Wyoming. Birds from northern Montana, Alberta, and Saskatchewan were identified as a single population that exhibited significant isolation by distance, with the Milk River demarcating two subpopulations. Both subpopulations exhibited high genetic diversity with no evidence that peripheral regions were genetically depauperate or highly structured. However, river valleys and a large agricultural region were significant barriers to dispersal. Leks were also composed primarily of non-kin, rejecting the idea that leks form because of male kin association. Northern Montana sage-grouse are maintaining genetic connectivity in fragmented and northern peripheral habitats via dispersal through and around various forms of fragmentation.


Sage-grouse Genetic structure Declining population Genetic diversity Periphery 



We thank the following agencies for molted feather collection: Alberta Fish and Wildlife, Alberta Conservation Association, Saskatchewan Environment, Parks Canada, Montana BLM, and Montana FWP. We thank Pat Fargey, Sue McAdam, Al Rosgaard, Kelvin Johnson, Craig Miller, Mark Sullivan, Fritz Prellwitz, and Randy Matchett for coordinating sample collection. We thank Jennifer Carpenter for 2005/6 Alberta sample collection. We thank Tara Cessford, Brad Necyk, and Andrew Wong for sample preparation, Corey Davis, Lindsey Carmichael, Bryan Stevens, and Greg Wilson for technical and statistical advice, and Curtis Strobeck for lab space in 2003/4. We thank Michael Schroeder for discussions on grouse dispersal and Donna Bush, Robert Gibson, Randy Matchett, Tom Rinkes, and four anonymous reviewers for comments on earlier drafts. This research was funded by WWF Canada ESRF, ACA Grant Eligible Conservation Fund, Parks Canada SARRAEF, the Nature Conservancy, ACA and ACCRU Challenge Grants in Biodiversity, ASRPWF Development Initiatives Program, Montana BLM, WWF USA, APWS Leslie Tassel Fund, SCO Taverner Award, and POPWA. Krista Bush was supported by NSERC Postgraduate Doctoral and Masters Scholarships, Walter H. Johns Fellowships, McAfee Estate Scholarship in Zoology, SERM Scholarships, GCA Frances Peacock Scholarship for Native Bird Habitat, APWS Charles Sivelle Scholarship, CWF Orville Erickson Memorial Scholarship, and a COPandGA Bob Landon Bursary.

Supplementary material

10592_2010_159_MOESM1_ESM.pdf (67 kb)
Supplementary material 1 (PDF 66 kb)
10592_2010_159_MOESM2_ESM.pdf (51 kb)
Supplementary material 2 (PDF 51 kb)


  1. Aars J, Dallas JF, Piertney SB et al (2006) Widespread gene flow and high genetic variability in populations of water voles Arvicola terrestris in patchy habitats. Mol Ecol 15:1455–1466PubMedCrossRefGoogle Scholar
  2. Aldridge CL, Brigham RM (2003) Distribution, abundance, and status of the greater sage-grouse, Centrocercus urophasianus, in Canada. Can Field-Nat 117:25–34Google Scholar
  3. Antunes A, Faria R, Johnson WE et al (2006) Life on the edge: the long-term persistence and contrasting spatial genetic structure of distinct brown trout life histories at their ecological limits. J Hered 97:193–205PubMedCrossRefGoogle Scholar
  4. Beck JL, Reese KP, Connelly JW, Lucia MB (2006) Movements and survival of juvenile greater sage-grouse in southeastern Idaho. Wildlife Soc B 34:1070–1078CrossRefGoogle Scholar
  5. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568PubMedCrossRefGoogle Scholar
  6. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  7. Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516PubMedCrossRefGoogle Scholar
  8. Bouzat JL, Johnson K (2004) Genetic structure among closely spaced leks in a peripheral population of lesser prairie-chickens. Mol Ecol 13:499–505PubMedCrossRefGoogle Scholar
  9. Boyko AR, Gibson RM, Lucas JR (2004) How predation risk affects the temporal dynamics of avian leks: greater sage grouse versus golden eagles. Am Nat 163:154–165PubMedCrossRefGoogle Scholar
  10. Bush KL (2008) A pressure-operated drop net for capturing Greater Sage-Grouse. J Field Ornithol 79:64–70CrossRefGoogle Scholar
  11. Bush KL (2009) Genetic diversity and paternity analysis of endangered greater Canadian sage-grouse (Centrocercus urophasianus). Ph.D. Dissertation, University of AlbertaGoogle Scholar
  12. Bush KL, Vinsky MD, Aldridge CL, Paszkowski CA (2005) A comparison of sample types varying in invasiveness for use in DNA sex determination in an endangered population of greater sage-grouse (Centrocercus urophasianus). Conserv Genet 6:867–870CrossRefGoogle Scholar
  13. Bush KL, Aldridge CL, Carpenter JE et al (2010) Birds of a feather do not always lek together: genetic diversity and kinship structure of greater sage-grouse (Centrocercus urophasianus) in Alberta. Auk 127:343–353CrossRefGoogle Scholar
  14. Caizergues A, Dubois S, Mondor G, Rasplus J-Y (2001) Isolation and characterisation of microsatellite loci in black grouse (Tetrao tetrix). Mol Ecol Notes 1:36–38CrossRefGoogle Scholar
  15. Caizergues A, Rätti O, Helle P et al (2003a) Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 12:2297–2305PubMedCrossRefGoogle Scholar
  16. Caizergues A, Bernard-Laurent A, Brenot JF et al (2003b) Population genetic structure of rock ptarmigan Lagopus mutus in Northern and Western Europe. Mol Ecol 12:2267–2274PubMedCrossRefGoogle Scholar
  17. Casgrain P, Legendre P (2001) The R package for multivariate and spatial analysis, version 4.0 user’s manual. Department des Sciences biologiques, Université de Montreal
  18. Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86PubMedCrossRefGoogle Scholar
  19. Cheng HH, Levin I, Vallejo RL et al (1995) Development of a genetic map of the chicken with high-utility markers. Poultry Sci 74:1855–1874Google Scholar
  20. Connelly JW, Knick ST, Schroeder MA, Stiver SJ (2004) Conservation assessment of greater Sage-grouse and Sagebrush habitats. Western Association of Fish and Wildlife Agencies, Unpublished Report, Cheyenne, WyomingGoogle Scholar
  21. Dalke PD, Pyrah DB, Stanton DC, Crawford JE, Schlatterer EF (1963) Ecology, productivity and management of Sage grouse in Idaho. J Wild Manage 27:819–841Google Scholar
  22. Dunn PO, Braun CE (1985) Natal dispersal and lek fidelity of sage-grouse. Auk 102:621–627Google Scholar
  23. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  25. Excoffier L, Laval G, Schneider S (2006) arlequin ver 3.1: an integrated software package for population genetic analysis. Computational and Molecular Population Genetics Lab, University of Berne, SwitzerlandGoogle Scholar
  26. Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  27. Galbusera P, Githiru M, Lens L, Matthysen E (2004) Genetic equilibrium despite habitat fragmentation in an Afrotropical bird. Mol Ecol 13:1409–1421PubMedCrossRefGoogle Scholar
  28. Gibson RM (1996) Female choice in sage grouse: the roles of attraction and active comparison. Behav Ecol Sociobiol 39:55–59CrossRefGoogle Scholar
  29. Gibson RM, Pires D, Delaney KS, Wayne RK (2005) Microsatellite DNA analysis shows that greater sage grouse leks are not kin groups. Mol Ecol 14:4453–4459PubMedCrossRefGoogle Scholar
  30. Giesen KM, Schoenberg TJ, Braun CE (1982) Methods for trapping sage grouse in Colorado. Wildlife Soc B 10:223–231Google Scholar
  31. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Institute of Ecology, Lausanne
  32. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  33. Hewitt GM (1999) Post-glacial recolonization of European Biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  34. Höglund J, Alatalo RV (1995) Leks. Princeton University Press, Princeton, New JerseyGoogle Scholar
  35. Johansson M, Primmer CR, Merilä J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983PubMedCrossRefGoogle Scholar
  36. Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie chickens. Mol Ecol 12:3335–3347PubMedCrossRefGoogle Scholar
  37. Johnson JA, Bellinger MR, Toepfer JE et al (2004) Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 13:2617–2630PubMedCrossRefGoogle Scholar
  38. Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35PubMedCrossRefGoogle Scholar
  39. Kokko H, Lindström J (1996) Kin selection and the evolution of leks: whose success do young males maximize? Proc R Soc Lond B 263:919–923CrossRefGoogle Scholar
  40. Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078CrossRefGoogle Scholar
  41. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760CrossRefGoogle Scholar
  42. Lungle K, Pruss S (2008) Recovery strategy for greater sage-grouse (Centrocercus urophasianus urophasianus) in Canada. Species at Risk Act recovery strategy series, Parks Canada Agency, Unpublished report, Ottawa, OntarioGoogle Scholar
  43. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  44. Martínez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486PubMedCrossRefGoogle Scholar
  45. Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341CrossRefGoogle Scholar
  46. Oyler-McCance SJ, Taylor SE, Quinn TW (2005a) A multilocus population genetic survey of the greater sage-grouse across their range. Mol Ecol 14:1293–1310PubMedCrossRefGoogle Scholar
  47. Oyler-McCance SJ, St. John J, Taylor SE et al (2005b) Population genetics of Gunnison sage-grouse: implications for management. J Wildl Manage 69:630–637CrossRefGoogle Scholar
  48. Peacock MM, Ray C (2001) Dispersal in pikas (Ochotona princes): combining genetic and demographic approaches to reveal spatial and temporal patterns. In: Clobert J, Danchin E, Dhondt A, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 44–56Google Scholar
  49. Peakall R, Smouse PE (2001) genalex version 5.1. Genetic analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia
  50. Piertney SB, Dallas JF (1997) Isolation and characterization of hypervariable microsatellites in the red grouse. Lagopus lagopus scoticus. Mol Ecol 6:93–95PubMedCrossRefGoogle Scholar
  51. Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304CrossRefGoogle Scholar
  52. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  53. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  54. Raymond M, Rousset F (1995) Genepop version 3.1d: population genetics software for exact test and ecumenism. J Hered 86:248–249Google Scholar
  55. Sargarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147CrossRefGoogle Scholar
  56. Sauls H (2006) The role of selective foraging and cecal microflora in sage-grouse nutritional ecology. MSc. Thesis, University of MontanaGoogle Scholar
  57. Schroeder MA, Braun CE (1991) Walk-in traps for capturing greater prairie-chickens on leks. J Field Ornithol 62:378–385Google Scholar
  58. Schroeder MA, Braun CE (1993) Partial migration in a population of greater prairie-chickens in northeastern Colorado. Auk 110:21–28Google Scholar
  59. Schroeder MA, Aldridge CL, Apa AD et al (2004) Distribution of sage-grouse in North America. Condor 106:363–376CrossRefGoogle Scholar
  60. Segelbacher G, Storch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677PubMedCrossRefGoogle Scholar
  61. Segelbacher G, Paxton RJ, Steinbrueck G, Trontelj P, Storch I (2000) Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES). Mol Ecol 9:1934–1935PubMedCrossRefGoogle Scholar
  62. Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780PubMedCrossRefGoogle Scholar
  63. Semple K, Wayne RK, Gibson RM (2001) Microsatellite analysis of female mating behaviour in lek-breeding sage grouse. Mol Ecol 10:2043–2048PubMedCrossRefGoogle Scholar
  64. Sherman PW (1999) Birds of a feather lek together. Nature 401:119–120CrossRefGoogle Scholar
  65. Sokal RR, Rohlf FJ (1995) Biometry, the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company, New YorkGoogle Scholar
  66. Taylor SE, Oyler-McCance SJ, Quinn TW (2003) Isolation and characterization of microsatellite loci in greater sage-grouse (Centrocercus urophasianus). Mol Ecol Notes 3:262–264CrossRefGoogle Scholar
  67. Van Den Bussche RA, Hoofer SR, Wiedenfeld DA et al (2003) Genetic variation within and among fragmented populations of lesser prairie-chickens (Tympanuchus pallidicinctus). Mol Ecol 12:675–683CrossRefGoogle Scholar
  68. Veit ML, Robertson RJ, Hamel PB, Friesen VL (2005) Population genetic structure and dispersal across a fragmented landscape in cerulean warblers. Conserv Genet 6:159–174CrossRefGoogle Scholar
  69. Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645CrossRefGoogle Scholar
  70. Wang J (2004a) Sibship reconstruction for genetic data with typing errors. Genetics 166:1963–1979PubMedCrossRefGoogle Scholar
  71. Wang J (2004b) Application of the one-migrant-per-generation rule to conservation and management. Conserv Biol 18:332–343CrossRefGoogle Scholar
  72. Wiley RH (1973) Territoriality and non-random mating in the sage grouse, Centrocercus urophasianus. Anim Behav Mono 6:87–169Google Scholar
  73. Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431Google Scholar
  74. Wright S (1964) Stochastic processes in evolution. In: Garland J (ed) Stochastic models in medicine and biology. University of Wisconsin Press, Madison, pp 199–241Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Krista L. Bush
    • 1
    • 10
    Email author
  • Christopher K. Dyte
    • 2
  • Brendan J. Moynahan
    • 3
    • 4
  • Cameron L. Aldridge
    • 1
    • 5
  • Heather S. Sauls
    • 3
  • Angela M. Battazzo
    • 3
  • Brett L. Walker
    • 3
    • 6
  • Kevin E. Doherty
    • 3
    • 7
  • Jason Tack
    • 3
  • John Carlson
    • 8
  • Dale Eslinger
    • 9
  • Joel Nicholson
    • 9
  • Mark S. Boyce
    • 1
  • David E. Naugle
    • 3
  • Cynthia A. Paszkowski
    • 1
  • David W. Coltman
    • 1
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of MedicineUniversity of AlbertaEdmontonCanada
  3. 3.Wildlife Biology ProgramUniversity of MontanaMissoulaUSA
  4. 4.National Park ServiceJuneauUSA
  5. 5.NREL, Colorado State University and U.S. Geological SurveyFort CollinsUSA
  6. 6.Colorado Division of WildlifeGrand JunctionUSA
  7. 7.United States Fish and Wildlife ServiceBismarckUSA
  8. 8.Bureau of Land ManagementGlasgowUSA
  9. 9.Fish and Wildlife DivisionSustainable Resource DevelopmentMedicine HatCanada
  10. 10.KelloggUSA

Personalised recommendations