Abstract
The bull shark (Carcharhinus leucas) is a widely distributed, large coastal shark species known to travel long distances. These characteristics, coupled with the species’ long life span and late age of maturity, would lead one to predict significant global genetic exchange among bull shark populations. By contrast, data show localized depletion in some areas of large coastal shark fisheries, indicating some geographic isolation may exist. We examined genetic variation in the control region of mitochondrial DNA and at five nuclear microsatellite loci in bull sharks sampled from the western Atlantic to investigate the degree of population subdivision. The average per sample haplotype and nucleotide diversity in the mtDNA (0.51 ± 0.26 and 0.12% ± 0.12, respectively) and expected heterozygosity (0.84) in the microsatellite loci contrast sharply in having lower and higher values (respectively) relative to many other shark species. Significant structure exists between the Brazilian and all northern populations at the mtDNA control region (pairwise ΦST > 0.8, P < 0.001), but not at the nuclear microsatellite loci. Adjacent northern populations show weak to no genetic differentiation for both markers. These results are congruent with restricted maternal gene flow between populations caused by female site fidelity to nursery areas. We estimate the current effective population size to be around 160,000 and 221,000 individuals for the southern and northern Atlantic populations, respectively. The philopatric habits and the relatively low levels of mtDNA genetic diversity observed in bull sharks must be considered in the conservation of this species. Our results indicate that effective bull shark management strategies will require local, regional, and international attention and cooperation.
Similar content being viewed by others
References
Almeida OT, McGrath DG, Ruffino ML (2001) The commercial fisheries of the lower Amazon: an economic analysis. Fish Manag Ecol 8:253–269
Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates, Sunderland, MA
Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744
Barker JS, Frydenberg J, Gonzalez J, Davies HI, Ruiz A, Sorensen JG, Loeschcke V (2009) Bottlenecks, population differentiation and apparent selection at microsatellite loci in Australian Drosophila buzzatti. Heredity 102:389–401
Baum JK, Myers RA (2004) Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecol Lett 7:135–145
Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the northwest Atlantic. Science 299:389–392
Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572
Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907
Bowen BW, Grant WS, Hillis-Starr ZD, Bjorndal KA, Bolten AB, Bass AL (2007) Mixed stock analysis reveals the migrations of juvenile hawksbill turtles (Eretmochelys imbricata) in the Caribbean Sea. Mol Ecol 16:49–60
Branstetter S, Stiles R (1987) Age and growth-estimates of the bull shark, Carcharhinus leucas, from the northern Gulf of Mexico. Environ Biol Fishes 20:169–181
Burgess GH, Beerkircher LR, Cailliet GM, Carlson JK, Cortes E, Goldman KJ, Grubbs RD, Musick JA, Musyl MK, Simpfendorfer CA (2005) Is the collapse of shark populations in the northwest Atlantic Ocean and Gulf of Mexico real? Fisheries 30:20–26
Castro ALF, Stewart BS, Wilson SG, Hueter RE, Meekan MG, Motta PJ, Bowen BW, Karl SA (2007) Population genetic structure of Earth’s largest fish, the whale shark (Rhincodon typus). Mol Ecol 16:5183–5192
Chabot CL, Allen LG (2009) Global population structure of the tope (Caleorhinus galeus) inferred by mitochondrial control region sequence data. Mol Ecol 18:545–552
Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistics. Evolution 47:855–863
Compagno LJV (1984) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. II. Carcharhiniformes. FAO Fisheries Synopsis, Rome, Italy
Dallas JF (1992) Estimations of microsatellite mutation-rates in recombinant inbred strains of mouse. Mamm Genome 3:452–456
Dankel DJ, Skagen DW, Ulltang Ø (2008) Fisheries management in practice: review of 13 commercially important fish stocks. Rev Fish Biol Fish 18:201–233
Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboum E, Lathrop M, Gyapay G, Morissette J, Weissenback J (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154. Note: the extended reprint is available at www.genoscope.cns.fr/spip/Human-genetic-map-supplementary.html but, as of 9/15/2010, the mutation rate information is missing
DiBattista JD, Feldheim KA, Thibert-Plante X, Gruber SH, Hendry AP (2008) A genetic assessment of polyandry and breeding-site fidelity in lemon sharks. Mol Ecol 17:3337–3351
Duncan KM, Martin AP, Bowen BW, de Couet GH (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251
Dupuy BM, Stenersen M, Egeand T, Olaisen B (2004) Y-chromosomal microsatellite mutation rates: differences in mutation rate between and within loci. Hum Mutat 23:117–124
Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. TIG 16:551–558
Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491
Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50
Feldheim KA, Gruber SH, Ashley MV (2002) Breeding biology of lemon shark at a tropical nursery lagoon. Proc R Soc B: Biol Sci 269:1655–1661
Feldheim KA, Gruber SH, Ashley MV (2004) Reconstruction of parental microsatellite genotypes reveals female polyandry and philopatry in the lemon shark, Negaprion brevirostris. Evolution 58:2332–2342
Felsenstein J (2006) Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci. Mol Biol Evol 23:691–700
Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeogr 37:133–147
Grant WS, Bowen BW (1998) Shallow population history in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:425–426
Graves JE (1998) Molecular insights into the population structure of cosmopolitan marine fishes. J Hered 89:427–437
Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometals 48:361–372
Handley LJL, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578
Heithaus MR, Burkholder D, Hueter RE, Heithaus LI, Pratt HL, Carrier JC (2007) Spatial and temporal variation in shark communities of the lower Florida Keys and evidence for historical population declines. Can J Fish Aquat Sci 64:1302–1313
Heupel MR, Simpfendorfer CA (2008) Movement and distribution of young bull sharks Carcharhinus leucas in a variable estuarine environment. Aquat Biol 1:277–289
Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, designs and deployment of listening station arrays. Mar Freshw Res 57:1–13
Heupel MR, Carlson JK, Simpfendorfer CA (2007) Shark nursery areas: concepts, definition, characterization and assumptions. Mar Ecol Prog Ser 337:287–297
Heupel MR, Simpfendorfer CA, Fitzpatrick R (2010) Large-scale movement and reef fidelity of grey reef sharks. PLoS ONE 5:e9650. doi:10.1371/journal.pone.0009650
Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905–920
Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci 104:2785–27900
Hoelzel AR, Shiviji MS, Magnussen J, Francis MP (2006) Low worldwide genetic diversity in the basking shark (Cetorhinus maximus). Biol Lett 2:639–642
Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, Liu YZ, Li JL, Recker RR, Deng HW (2002) Mutation patters at dinucleotide microsatellite loci in humans. Am J Hum Genet 70:625–654
Hueter RE, Heupel MR, Heist EJ, Keeney DB (2005) Evidence of philopatry in sharks and implications for the management of shark fisheries. J Northwest At Fish Sci 35:239–247
Kashi Y, Soller M (1999) Functional roles of microsatellites and minisatellites. In: Goldstein DB, Schlotterer C (eds) Microsatellites: evolution, applications. Oxford University Press, New York, NY
Keeney DB, Heist EJ (2003) Characterization of microsatellite loci isolated from the blacktip shark and their utility in requiem and hammerhead sharks. Mol Ecol Notes 3:501–504
Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679
Keeney DB, Heupel MR, Hueter RE, Heist EJ (2005) Microsatellite and mitochondrial DNA analyses of the genetic structure of black tip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14:1911–1923
Kitamura T, Takemura A, Watabe S, Taniuchi T, Shimizu M (1996) Mitochondrial DNA analysis for the cytochrome b gene and D-loop region from the bull shark Carcharhinum leucas. Fish Sci 62:21–27
Kohler NE, Turner PA (2001) Shark tagging: a review of conventional methods and studies. Environ Biol Fishes 60:191–223
Lewallen EA, Anderson TW, Bohonak AJ (2007) Genetic structure of leopard shark (Triakis semifasciata) populations in California waters. Mar Biol 152:599–609
Martin AP (1995) Mitochondrial DNA sequence evolution in sharks: rates, patterns and phylogenetic inferences. Mol Biol Evol 12:1114–1123
Martin RA (2005) Conservation of freshwater and euryhaline elasmobranchs: a review. J Mar Biolog Assoc U K 85:1049–1073
Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA are slow in sharks compared to mammals. Nature 357:153–155
Montoya RV, Thorson TB (1982) The bull shark (Carcharhinus leucas) and the largetooth sawfish (Pristis perotteti) in Lake Bayano, a tropical man-made impoundment in Panama. Environ Biol Fishes 7:341–347
Morgan A, Cooper P, Curtis T, Burgess G (2009) An overview of the United States east coast bottom longline shark-fishery, 1994–2003. Mar Fish Rev 71:23–38
Müller J, Henle FGJ (1839) Systematische Beschreibung der Plagiostomen., Berlin. Veit 2:29–102
Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–1850
Neer JA, Thompson BA, Carlson JK (2005) Age and growth of Charcharhinus leucas in the northern Gulf of Mexico: incorporating variability in size at birth. J Fish Biol 67:370–383
Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10
Nóbrega MF, Lessa RP (2007) Descrição e composição das capturas da frota pesqueira artesanal da região nordeste do Brasil. Arq Ciên Mar 40:64–74
O’Connell MT, Shepherd TD, O’Connell AMU, Myers RA (2007) Long-term declines in two apex predators, bull sharks (Carcharhinus leucas) and alligator gar (Atractosteus spatula), in lake Pontchartrain, an oligohaline estuary in southeastern Louisiana. Estu Coa 30:567–574
Ortega LA (2008) Movement and distribution of juvenile bull sharks, Carcharhinus leucas, in response to water quality and quantity modifications in a Florida nursery. M.Sc. Thesis, University of South Florida, Tampa, USA
Ortega LA, Heupel MR, van Beynen P, Motta P (2009) Movement patterns and water quality preferences of juvenile bull sharks (Carcharhinus leucas) in a Florida estuary. Environ Biol Fishes 84:361–373
Pardini AT, Jones CS, Noble LR, Kreiser B, Malcolm H, Bruce BD, Stevens JD, Cliff G, Scholl MC, Francis M, Duffy CAJ, Martin AP (2001) Sex-biased dispersal of great white sharks. Nature 412:139–140
Pillans RD, Franklin CE (2004) Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient. Comp Biochem Physiol Mol Integr Physiol 138:363–371
Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for surveying molecular genetic diversities. Genetics 144:1247–1262
Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283
Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol Biol 8:157–173
Sadowsky V (1971) Note on bull shark, Carcharhinus leucas, in the lagoon region of Cananéia, Brazil. Bol Inst Oceano 20:71–78
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NY
Schultz JK, Feldheim KA, Gruber SH, Ashley MV, Mcgover TM, Bowen BW (2008) Global phylogeography and seascape genetics of the lemon shark (genus Negaprion). Mol Ecol 17:5336–5348
Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zoo 69:82–90
Simpfendorfer CA, Milward NE (1993) Utilization of a tropical bay as a nursery area by sharks of the families Carcharhinidae and Sphyrnidae. Environ Biol Fishes 37:337–345
Simpfendorfer CA, Freitas GG, Wiley TR, Heupel MR (2005) Distribution and habitat partitioning of immature bull sharks (Carcharhinus leucas) in a southwest Florida estuary. Estuaries 28:78–85
Simpfendorfer CA, Heupel MR, Collins AB (2008) Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting. Can J Fish Aquat Sci 65:482–492
Snelson FF, Mulligan TJ, Williams SE (1984) Food habits, occurrence and population structure of the bull shark, Carcharhinus leucas, in Florida coastal lagoons. Bull Mar Sci 34:71–80
Soto JMR, Nisa-Castro-Neto (1998) Revisão dos registros de tubarão-touro, Carcharhinus leucas (Valenciennes, 1839) (Chondrichthyes, Carcharhinidae), em rios e lagunas brasileiras. In: Resumos Expandidos da 11ª Semana Nacional de Oceanografia. FURG, Rio Grande, RS, Brasil, pp 314–316
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of the mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
Theisen TC, Bowen BW, Lanier W, Baldwin JD (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 19:4233–4247
Thomerson JE, Thorson TB, Hempel RL (1977) The bull shark, Carcharhinus leucas, from the upper Mississippi River near Alton, Illinois. Copeia 1977:166–168
Thorson TB (1971) Movements of bull sharks, Carcharhinus leucas, between the Caribbean Sea and Lake Nicaragua demonstrated by tagging. Copeia 1971:336–338
Thorson TB (1972) Status of bull shark, Carcharhinus leucas, in Amazon River. Copeia 1971:601–605
Thorson TB, Watson DE, Cowan CM (1966) The status of the freshwater shark of Lake Nacaragua. Copeia 1966:385–402
Walsh PS, Metzger DA, Higuchi R (1991) Chelex medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513
Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450
Weber JL, Wong C (1993) Mutation of short tandem repeats. Hum Mol Genet 2:1123–1128
Wintner SP, Dudley SFJ, Kistnasamy N, Everett B (2002) Age and growth estimates for the Zambezi shark, Carcharhinus leucas, from the east coast of South Africa. Mar Fresh Res 53:557–566
Yeiser BG, Heupel MR, Simpfendorfer CA (2008) Occurrence, home range and movement patterns of juvenile bull (Carcharhinus leucas) and lemon (Negaprion brevirostris) sharks within a Florida estuary. Mar Fresh Res 59:489–501
Zhivotovsky LA, Bennett L, Bowcock AM, Feldman MW (2000) Human population expansion and microsatellite variation. Mol Biol Evol 17:757–767
Acknowledgments
We thank the major contributors to this study including the organizations and people that assisted collecting tissue samples: CSFOP observer coordinator A. Morgan and all the hardworking CSFOP fishery observers. We also thank those individuals who provided laboratory and data analysis assistance: A. Bass, C. Curtis, K. Gorospe, C. Puchulutegui, C. Rocha, and L. Rocha. Part of this work was carried out by using the resources of the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation. Two anonymous reviewers provided helpful suggestions that improved the manuscript. Much of the laboratory research was conducted in the Department of Biology, University of South Florida (Tampa, FL) in partial fulfillment of doctoral research of ALFC who was supported, in part, by CAPES Fellowship BEX 1277-02-2. Funding for this project also was provided by NSF grants DEB 98-06905 and DEB 03-21924 to SAK and National Marine Fisheries Service funding of the National Shark Research Consortium. This is SOEST contribution No. 8014 and HIMB contribution No. 1404.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Karl, S.A., Castro, A.L.F., Lopez, J.A. et al. Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conserv Genet 12, 371–382 (2011). https://doi.org/10.1007/s10592-010-0145-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10592-010-0145-1