Skip to main content

Advertisement

Log in

Genetic diversity and differentiation of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Oriental beech (Fagus orientalis Lipsky) is a widespread monoecious and wind-pollinated tree species. It is one of the major components of the Hyrcanian forests of Iran and it is of both ecological and economical importance. Twelve beech stands were surveyed at 9 chloroplast (cp) and 6 nuclear (n) polymorphic microsatellite loci (simple sequence repeats, SSR) to provide information on distribution of genetic diversity within and among populations and on gene conservation and silvicultural management of this species. High levels of genetic differentiation were detected for the chloroplast genome (F ST = 0.80 and R ST = 0.95), in sharp contrast to the nuclear genome (F ST = 0.06, R ST = 0.05). The analysis of molecular variance (AMOVA) showed that 48% of the total cpSSR variation was attributable to differences among regions and 30% to differences among populations within regions, suggesting multiple origins of beech populations in Hyrcanian forests. Nuclear SSRs confirmed the presence of significant differentiation among populations and among geographic regions, even if, as expected, this was less pronounced than that found with cpSSRs (based on AMOVA, differences among regions and among populations within regions each contribute 5% to total nSSR variance). A highly significant correlation between genetic (nSSRs) and geographic distances (R 2 = 0.522) was estimated, thus showing an isolation by distance effect. The application of spatial analysis of molecular variance (SAMOVA) using both marker data allowed identification of genetically homogeneous groups of populations. Possible applications of these results for the certification of provenances and/or seed lots and for designing conservation programs are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguinagalde I, Hampe A, Mohanty A, Martin JP, Duminil J, Petit RJ (2005) Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. J Biogeog 32(2):329–339

    Article  Google Scholar 

  • Anonymous (2000) Iran statistical yearbook. Statistical Center of Iran, Iran

  • Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to unclear genes. Genetics 121:63–627

    Google Scholar 

  • Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For Ecol Manage 247:98–106

    Article  Google Scholar 

  • Caron H, Dumas S, Marque G (2000) Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Mol Ecol 9:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Comps B, Thiébaut B, Merzeau D (1991) Genetic variation in European beech stands. In: Müller-Starck G, Ziehe M (eds) Genetic variation in European populations of forest trees. Sauerländer's Verlag, Frankfurt am Main, pp 110–124

  • Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA phylogeography of the European beech (Fagus sylvatica L.) in Europe. Evolution 50(6):2515–2520

    Article  CAS  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oaks, Quercus macrocarpa. Mol Ecol 5:615–627

    Article  Google Scholar 

  • Duminil J, Caron H, Scotti I, Cazal S, Petit RJ (2006) Blind population genetics survey of tropical rainforest trees. Mol Ecol 15(12):3505–3513

    Article  CAS  PubMed  Google Scholar 

  • Dumolin-Lapègue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogenetic structure of white oaks throughout the European continent. Genetics 146:1475–1487

    PubMed  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Dutech C, Maggia L, Joly HI (2000) Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol Ecol 9:1427–1432

    Article  CAS  PubMed  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 80:548–593

    Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

  • Fishwick RW (1972) The Caspian forests of Iran. Commonwealth Forestry Rev 51:295–306

    Google Scholar 

  • Geburek T (1997) Isozymes and DNA markers in gene conservation of forest trees. Biodivers Conserv 6:1639–1654

    Article  Google Scholar 

  • Habibi H (1985) Investigation on soil of beech forests in Iran and its role on development of different type of beech forests. Iranian J Natu Res 39:6–18

    Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyze spatial genetic structure at the individual or population level. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hawley GJ, Schaberg PG, DeHayes DH, Brissette JC (2005) Silviculture alters the genetic structure of an eastern hemlock forest in Maine, USA. Can J For Res 35:143–150. doi:10.1.1391x04-148

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Google Scholar 

  • Hosseini S, Madjnonian B, Nieuwenhuis M (2000) Damage to natural regeneration in the Hyrcanian forests in Iran: a comparison of two typical timber extraction operations. J Forest Engineer 11:69–73

    Google Scholar 

  • Hu XS, Ennos R (1997) On estimation of the ratio of pollen to seed flow among plant populations. Heredity 79:541–552

    Article  Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (2000) Microsatellite analysis of the regeneration process of Magnolia obovata Thunb. Heredity 84:143–151

    Article  CAS  PubMed  Google Scholar 

  • König AO, Ziegenhagen B, van Dam BC, Csaikl UM, Coart E, Degen B, Burg K, de Vries SMG, Petit RJ (2002) Chloroplast DNA variation of oaks in western central Europe and genetic consequences of human influences. For Ecol Manage 156:147–166

    Article  Google Scholar 

  • Lee CT, Wickneswari R, Mahani MC, Zakri AH (2002) Effect of selective logging on the genetic diversity of Scaphium macropodurn. Biol Conserv 104:107–118. doi:10.1016lS0006-3207(01)00159-8

    Google Scholar 

  • Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618

    Article  CAS  PubMed  Google Scholar 

  • Lu SY, Peng CI, Cheng YP, Hong KH, Chiang TY (2001) Chloroplast DNA phylogeography of Cunninghamia konishii (Cupressaceae), an endemic conifer of Taiwan. Genome 44:797–807

    Article  CAS  PubMed  Google Scholar 

  • Marchelli P, Gallo L, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646

    Article  CAS  Google Scholar 

  • Marquardt PE, Echt CS, Epperson BK, Pubanz DM (2007) Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can J For Res 37:2652–2662

    Article  CAS  Google Scholar 

  • Marvie-Mohadjer MR (1976) Some quantitative characteristics of Iranian beech forests. Iranian J Natu Res 34:77–97

    Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardised genetic differentiation measure. Evolution 60:2399–2402

    PubMed  Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064

    CAS  PubMed  Google Scholar 

  • Mobayen S, Tregubov V (1969) The vegetative map of Iran, No 14. Tehran University, Tehran, p 50

  • Mohanty A, Martin JP, Aguinagalde I (2000) Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theor Appl Genet 100:1304–1310

    Article  CAS  Google Scholar 

  • Murawski DA, Gunatilleke IAUN, Bawa KS (1994) The effects of selective logging on inbreeding in Shorea megistophylla (Dipterocarpaceae) from Sri Lanka. Conserv Biol 8:997–1002

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Parsapajouh D (1976) Research on physical characteristics of Iranian beech timbers in different growing stations. Iranian J Natu Res 34:21–34

    Google Scholar 

  • Pastorelli R, Smulders MJM, Van’T Westender WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagua sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78

  • Peakal R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Sagheb-Talebi K, Schütz JP (2002) The structure of natural oriental beech (Fagus orientalis) in the Caspian region of Iran and potential for the application of the group selection system. Forestry 75(4):465–472

    Article  Google Scholar 

  • Salehi Shanjani P (2002) Genetic diversity of Oriental beech (Fagus orientalis Lipsky) and its relations with some of physiology, biochemistry and morphology characteristics in Iran. Dissertation, Teacher Training University

  • Salehi Shanjani P, Paule L, Khavari-Nejad RA, Gömöry D, Sagheb-Talebi K (2002) Allozymic variability in beech (Fagus orientalis Lipsky) forests over Hyrcanian zone. For Genet 9(4):297

    Google Scholar 

  • Salehi Shanjani P, Vettori C, Giannini R, Khavari-nejad RA (2004) Intraspecific variation and geographic patterns of Fagus orientalis Lipsky chloroplast DNA. J Silveae Genet 53:193–197

    Google Scholar 

  • Sebastiani F, Carnevale S, Vendramin GG (2004) A new set of mono- and di-nucleotide chloroplast microsatellites in Fagaceae. Mol Ecol Notes 4:259–261

    Article  CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  Google Scholar 

  • Štambuk S, Sutlović D, Bakarić P, Petricevic S, Andelinovic S (2007) Potential usefulness of microsatellite-based genotyping of Croatian olive (Olea europaea L.) in forensic casework. Croat Med J 48:434–441

    Google Scholar 

  • Streiff R, Labbe T, Bacillieri R, Steinkellner H, Glössl J, Kremer A (1998) Within-population genetic structure in Quercus robur L. and Q. petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328

    Article  Google Scholar 

  • Thomas BR, Macdonald SE, Hicks M, Adams DL, Hodgetts RB (1999) Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theor Appl Genet 98:793–801. doi:10.1007/s001220051136

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Wright S (1951) The genetic structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Yazdani R, Muona O, Rudin D, Szmidt AE (1985) Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For Sci 31:430–436

    Google Scholar 

Download references

Acknowledgments

This project was supported by the International Plant Genetic Resource Institute, Bioversity International, formerly IPGRI (project D06C Fellowships). Parvin Salehi Shanjani received Vavilov-Frankle Fellowshio (2003) from Bioversity International, formerly IPGRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Salehi Shanjani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi Shanjani, P., Vendramin, G.G. & Calagari, M. Genetic diversity and differentiation of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers. Conserv Genet 11, 2321–2331 (2010). https://doi.org/10.1007/s10592-010-0118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0118-4

Keywords

Navigation