Skip to main content

Advertisement

Log in

Conservation measures for Rosa arvensis Huds. in Flanders (Belgium) based on congruent genetic and phenotypic population differentiation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Rosa arvensis is a naturally rare and scattered indigenous wild rose species in Flanders, the northern part of Belgium. As is the case for many light demanding woody species in this area, it is currently threatened by habitat fragmentation and destruction due to high human pressure. Recent inventories revealed a restricted distribution pattern for this rose, concentrated mainly in two regions of the south western part of Flanders. Surprisingly, strong differentiation was observed among natural populations in these two proximate regions in both an AFLP-based and a morphological analysis. A common garden experiment indicated a partly genetic basis for the morphological divergence. Additionally, the AFLP analysis of roses sampled in the same forested area within one of the two regions resulted in two differentiated gene pools. Possible causes for the observed differentiation can be adaptive divergence, founder effects and/or historical hybridisation with dogroses. Together, the congruent genetic and morphometric differentiation between the two geographic regions urges a cautious approach in conservation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Austin D (1992) Old roses and English roses. Rowman Littlefield, Woodbridge, Great Britain

    Google Scholar 

  • Boshier D, Stewart J (2005) How local is local? Identifying the scale of adaptive variation in ash (Fraxinus excelsior L.): results from the nursery. Forestry 78:135–143

    Article  Google Scholar 

  • Corander J, Marttinen P, Siren J et al (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9:539

    Article  Google Scholar 

  • Danusevicius D, Persson B (1998) Phenology of natural Swedish populations of Picea abies as compared with introduced seed sources. For Genet 5:211–220

    Google Scholar 

  • De Cock K (2008) Genetic diversity of wild roses (Rosa spp.) in Europe, with an in-depth morphological study of Flemish populations. PhD, Research Institute for Nature and Forest, Brussels

  • De Cock K, Vander Mijnsbrugge K, Breyne P et al (2007) The diversity of autochthonous roses in Flanders, Belgium, in the view of the European GENEROSE Reference Framework. Acta Hortic 760:621–628

    Google Scholar 

  • De Cock K, Vander Mijnsbrugge K, Breyne P et al (2008) Morphological and AFLP-based differentiation within the taxonomical complex section Caninae subgenus Rosa L. Ann Bot 102:685–697

    Article  PubMed  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • Epperson BK (2003) Geographical genetics. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Fazekas A, Yeh FC (2001) Random amplified polymorphic DNA diversity of marginal and central populations in Pinus contorta spp. Latifolia. Genome 44:13–22

    Google Scholar 

  • Graham GG, Primavesi AL (1993) Roses of Great Britain and Ireland, BSBI Handbook No 7. Botanical Society of the British Isles, London

    Google Scholar 

  • Hamrick JL, Godt MJ (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Henker H (2000) Rosa. In: Conert EI, Jäger J, Kadereit J et al (eds) Hegi G: Illustrierte Flora von Mitteleuropa, Bd IV/2C. Lfg A Parey Buchverlag, Berlin, pp 1–108

    Google Scholar 

  • Henker H, Schulze G (1993) Die Wildrosen des norddeutschen Tieflandes. Gleditschia 21:3–22

    Google Scholar 

  • Hubert J, Cottrell J (2007) The role of forest genetic resources in helping British forests respond to climate change. Forestry Commission, Edinburgh

    Google Scholar 

  • Hufford K, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Jones AT, Hayes MJ, Sackville Hamilton NR (2001) The effect of provenance on the performance of Crataegus monogyna in hedges. J Appl Ecol 38:952–962

    Article  Google Scholar 

  • Jurgens AH, Seitz B, Kowarik I (2007) Genetic differentiation of R. canina (L.) at regional and continental scales. Plant Syst Evol 269:39–53

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keller M, Kollman J, Edwards PJ (2000) Genetic introgression from distant provenances reduces fitness in local weed populations. J Appl Ecol 37:647–659

    Article  Google Scholar 

  • Kleinschmit JRG, Kownatzki D, Gregorius H-R (2004) Adaptational characteristics of autochthonous populations-consequences for provenance delineation. For Ecol Manag 197:213–224

    Article  Google Scholar 

  • Knight TM, Miller TE (2004) Local adaptation within a population of Hydrocotyle bonariensis. Evol Ecol Res 6:103–114

    Google Scholar 

  • Koopman WJM, Vosman B, Sabatino GJH et al (2008) AFLP markers as a tool to reconstruct complex relationships in the genus Rosa Rosaceae. Am J Bot 95:353–363

    Article  CAS  Google Scholar 

  • Lenssen JP, Van Kleunen M, Fischer M et al (2004) Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. J Ecol 92:696–706

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Maes N, Rövekamp C (1998) Oorspronkelijk inheemse bomen en struiken in Vlaanderen Een onderzoek naar autochtone genenbronnen in de Ecologische Impulsgebieden. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Maes N, Rövekamp C (2000) Oorspronkelijk inheemse bomen en struiken in het Regionaal Landschap Vlaamse Ardennen. Een onderzoek naar autochtone genenbronnen. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Maes N, Rövekamp C, Opstaele B et al (2003) Oorspronkelijk inheemse bomen en struiken in de houtvesterijen Antwerpen en Turnhout. Een onderzoek naar autochtone genenbronnen. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Maes N, Cosyns E, Opstaele B et al (2005) Autochtone bomen en struiken in de houtvesterij Gent, provincie Oost-Vlaanderen. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Nilsson O (1967) Drawings of Scandinavian plants 1–8 Rosa L. Bot Not 120:1–408

    Google Scholar 

  • Nilsson O (1999) Wild roses in Norden: taxonomic discussion. Acta Bot Fenn 162:169–173

    Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Carlson-Nilsson U, Werlemark G et al (1997) Different levels of morphometric variation in three heterogamous dogrose species Rosa sect Caninae, Rosaceae. Plant Syst Evol 204:207–224

    Article  Google Scholar 

  • Nybom H, Esselink GD, Werlemark G et al (2006) Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect Caninae. J Evol Biol 19:635–648

    Article  CAS  PubMed  Google Scholar 

  • Opstaele B (2001) Autochtone bomen en struiken in de houtvesterijen Leuven en Hasselt. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit R, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:87–214

    Article  Google Scholar 

  • Petit R, Bialozyt R, Garnier-Géré P et al (2004) Ecology and genetics of tree invasions: from recent introductions to quaternary migrations. For Ecol Manag 197:117–137

    Article  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs. The MacMillan Company, New York

    Google Scholar 

  • Rövekamp C, Maes N (1999) Oorspronkelijk inheemse bomen en struiken in Vlaanderen Een onderzoek naar autochtone genenbronnen in de Regionale Landschappen West-Vlaamse Heuvels, Vlaamse Ardennen en de houtvesterijen Hechtel en Bree. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Rövekamp C, Maes N (2000) Oorspronkelijk inheemse bomen en struiken in het Regionaal Landschap West-Vlaamse Heuvels. Een onderzoek naar autochtone genenbronnen. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Rövekamp C, Maes N, Zwaenepoel A (2000) Oorspronkelijk inheemse bomen en struiken en cultuurwilgen in de Vlaamse Vallei. Een onderzoek naar autochtone genenbronnen in Gent en omgeving. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Rövekamp C, Maes N, Opstaele B et al (2005) Autochtone bomen en struiken in de houtvesterij Brugge, provincie West-Vlaanderen. Ministerie van de Vlaamse Gemeenschap, Afdeling Bos and Groen, Brussels

    Google Scholar 

  • Rövekamp C, Maes N, Opstaele B et al (2008) Autochtone bomen en struiken in de houtvesterijen Groenendaal en Voeren. Ministerie van de Vlaamse Gemeenschap, Agentschap Natuur and Bos, Brussels

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Ueda Y, Akimoto S (2001) Cross- and self-compatibility in various species of the genus Rosa. J Hortic Sci Biotechnol 76:392–395

    Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Van Huylenbroeck J, Smulders MJM, Debener T et al (2005) GENEROSE: genetic evaluation of European rose resources for conservation and horticultural use. Acta Hortic 690:119–123

    Google Scholar 

  • Vander Mijnsbrugge K, Cox K, Van Slycken J (2005) Conservation approaches for autochthonous woody plants in Flanders. Sylvia Genet 54:197–206

    Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M et al (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Waser NM, Price MP (1985) Reciprocal transplant experiments with Delphinium nelsonii—evidence or local adaptation. Am J Bot 72:1726–1732

    Article  Google Scholar 

  • Werlemark G (2000) Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sex Plant Reprod 12:353–359

    Article  Google Scholar 

  • Wissemann V (2003) Classification: conventional taxonomy of wild roses. In: Roberst AV (ed) Encyclopedia of rose science. Elsevier Academic Press, Oxford, pp 111–117

    Google Scholar 

  • Wissemann V, Gallenmüller F, Ritz CM et al (2006) Inheritance of growth form and mechanical characters in reciprocal polyploid hybrids of Rosa section Caninae—implications for the ecological niche differentiation and radiation process of hybrid offspring. Trees 20:340–347

    Article  Google Scholar 

Download references

Acknowledgments

We are greatly thankful to S. Moreels for skilful propagation of the R. arvensis cuttings for the common garden experiment and for the seed orchards. Also, we thank the successive forest rangers and labourers for the planting and management of this common garden experiment and the seed orchards. We wish to thank M. Vanloosveldt, F. De Mol and A. Thomaes for their help with the morphological analyses, L. Verschaeve for the assistance with the AFLP-analyses, and P. Quataert and P. Verschelde for their statistical support. This work was not possible without financial support of the Agency of Nature and Forest, Flemish Government [BandG/19/2001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Vander Mijnsbrugge.

Additional information

Conservation measures for Rosa arvensis Huds. in Flanders (Belgium) based on congruent genetic and phenotypic population differentiation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vander Mijnsbrugge, K., De Cock, K., Cox, K. et al. Conservation measures for Rosa arvensis Huds. in Flanders (Belgium) based on congruent genetic and phenotypic population differentiation. Conserv Genet 11, 2243–2253 (2010). https://doi.org/10.1007/s10592-010-0109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0109-5

Keywords

Navigation