Conservation Genetics

, Volume 11, Issue 5, pp 2085–2089 | Cite as

10,000 years in isolation? Honeybees (Apis mellifera) in Saharan oases

Short Communication

Abstract

After the transition from a savannah to a desert about 10,000 years ago the isolated Saharan oases offer a unique case for studying the effect of population fragmentation and isolation over a period of many thousand years. We use the honeybee, Apis mellifera, as a test system because they are an abundant wild species in the African dry savannahs but are particularly sensitive to drift and bottlenecks in small isolated populations due to the small effective size resulting from male haploidy, the sex determination system and sociality. We compared the non-fragmented coastal population with the oases of Brak and Kufra using 15 polymorphic microsatellite loci assessing the mating frequency, colony density, gene diversity, and population differentiation. We found that the honeybee population of the remote oasis of Kufra is well isolated whereas those of the oasis of Brak and the coastal regions show genetic foot prints of introgression by commercial beekeeping. The isolated Kufra population showed no indications of inbreeding suggesting that the endemic population size is sufficient to ensure sustainable local survival.

Keywords

Apis mellifera Microsatellite Isolation Oases North Africa 

References

  1. Dall’Olio R, Marino A, Lodesani M, Moritz RFA (2007) Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie 38:207–217CrossRefGoogle Scholar
  2. De la Rúa P, Galián J, Serrano J, Moritz RFA (2001) Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands. Mol Ecol 10:1733–1742CrossRefGoogle Scholar
  3. Engel MS (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). J Hymenoptera Res 8:165–196Google Scholar
  4. Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258:1–7CrossRefGoogle Scholar
  5. Franck P, Garnery L, Solignac M, Cornuet JM (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution 52:1119–1134CrossRefGoogle Scholar
  6. Franck P, Garnery L, Celebrano G, Solignac M, Cornuet JM (2000) Hybrid origin of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula). Mol Ecol 9:907–921CrossRefPubMedGoogle Scholar
  7. Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430CrossRefPubMedGoogle Scholar
  8. Garnery L, Franck P, Baudry E, Vautrin D, Cornuet JM, Solignac M (1998a) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). I. Mitochondrial DNA. Gene Sel Evol 30:31–47CrossRefGoogle Scholar
  9. Garnery L, Franck P, Baudry E, Vautrin D, Cornuet JM, Solignac M (1998b) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). II. Microsatellites. DNA. Gene Sel Evol 30(30):49–74CrossRefGoogle Scholar
  10. Gasse FR, Tehet A, Durand A, Gilbert E, Fontes JC (1990) The arid-humid transition in the Sahara and Sahel during the last glaciation. Nature 346:141–146CrossRefGoogle Scholar
  11. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  12. Lattorff HMG, Moritz RFA, Fuchs S (2005) A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity 94:533–537CrossRefPubMedGoogle Scholar
  13. Park SDE (2001) Trypanotolerance in west African cattle and the population genetic effects of selection. PhD Thesis, University of DublinGoogle Scholar
  14. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  15. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer Verlag, BerlinGoogle Scholar
  16. Shaibi T, Fuchs S, Moritz RFA (2009a) Morphological study of honeybees (Apis mellifera) from Libya. Apidologie 40:97–105CrossRefGoogle Scholar
  17. Shaibi T, Muñoz Dall’Olio R, Lodesani M, De La Rúa P, Moritz RFA (2009b) Apis mellifera evolutionary lineages in northern Africa: Libya, where orient meets occident. Insectes Soc 56:293–300CrossRefGoogle Scholar
  18. Sheppard WS, Meixner MD (2003) Apis mellifera pomonella, a new honey bee subspecies from the Tien Shan mountains of Central Asia. Apidologie 34:367–375CrossRefGoogle Scholar
  19. Sheppard WS, Rinderer JA, Mazzoli JA, Stelzer JA, Shimanuki H (1991a) Gene flow between African and European-derived honey bee populations in Argentina. Nature 349:782–784CrossRefGoogle Scholar
  20. Sheppard WS, Soares AEE, DeJong D, Shimanuki H (1991b) Hybrid status of honey bee populations near the historic origin of Africanization in Brazil. Apidologie 22:643–652CrossRefGoogle Scholar
  21. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet JM (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307–311CrossRefGoogle Scholar
  22. Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  23. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Zoology Department, Science FacultyAl-Fatah UniversityTripoliLibya
  2. 2.Institut für BiologieMartin-Luther-Universität Halle-WittenbergHalle/SaaleGermany

Personalised recommendations