Skip to main content
Log in

Genetic variation and effective population size in isolated populations of coastal cutthroat trout

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Following glacial recession in southeast Alaska, waterfalls created by isostatic rebound have isolated numerous replicate populations of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in short coastal streams. These replicate isolated populations offer an unusual opportunity to examine factors associated with the maintenance of genetic diversity. We used eight microsatellites to examine genetic variation within and differentiation among 12 population pairs sampled from above and below these natural migration barriers. Geological evidence indicated that the above-barrier populations have been isolated for 8,000–12,500 years. Genetic differentiation among below-barrier populations (F ST = 0.10, 95% C.I. 0.08–0.12) was similar to a previous study of more southern populations of this species. Above-barrier populations were highly differentiated from adjacent below-barrier populations (mean pairwise F ST = 0.28; SD 0.18) and multiple lines of evidence were consistent with asymmetric downstream gene flow that varied among streams. Each above-barrier population had reduced within-population genetic variation when compared to the adjacent below-barrier population. Within-population genetic diversity was significantly correlated with the amount of available habitat in above-barrier sites. Increased genetic differentiation of above-barrier populations with lower genetic diversity suggests that genetic drift has been the primary cause of genetic divergence. Long-term estimates of N e based on loss of heterozygosity over the time since isolation were large (3,170; range 1,077–7,606) and established an upper limit for N e if drift were the only evolutionary process responsible for loss of genetic diversity. However, it is likely that a combination of mutation, selection, and gene flow have also contributed to the genetic diversity of above-barrier populations. Contemporary above-barrier N e estimates were much smaller than long-term N e estimates, not correlated with within-population genetic diversity, and not consistent with the amount of genetic variation retained, given the approximate 10,000-year period of isolation. The populations isolated by waterfalls in this study that occur in larger stream networks have retained substantial genetic variation, which suggests that the amount of habitat in headwater streams is an important consideration for maintaining the evolutionary potential of isolated populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1988) Conservation and distribution of genetic variation in a polytypic species: the cutthroat trout. Conserv Biol 2:170–184

    Article  Google Scholar 

  • Allendorf FW, Leary RF, Hitt NP, Knudsen KL, Lundquist LL, Spruell P (2004) Intercrosses and the US Endangered Species Act: should hybridized populations be included as westslope cutthroat trout? Conserv Biol 18:1203–1213

    Article  Google Scholar 

  • Angers B, Magnan P, Plante M, Bernatchez L (1999) Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalis). Mol Ecol 8:1043–1053

    Article  Google Scholar 

  • Balloux F (2001) EASYPOP (Version 1.7): a computer program for population genetics simulations. J Hered 92:301–302

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Andren H, Hansson B, Pedersen HC, Sand H, Sejberg D, Wabakken P, Akesson M, Liberg O (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1:e72

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouza C, Arias J, Castro J, Sanchez L, Martinez P (1999) Genetic structure of brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Mol Ecol 8:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Bryant MD (2002) Estimating fish populations by removal methods with minnow traps in southeast Alaska streams. N Am J Fish Manag 20:923–930

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Carlsson J, Nilsson J (1999) Effects of geomorphological structures on genetic differentiation among brown trout populations in a northern Boreal river drainage. Trans Am Fish Soc 130:36–45

    Article  Google Scholar 

  • Cavalli-Sforza LL, Menozzi P, Piazza A (1993) Demic expansions and human evolution. Science 259:639–646

    Article  CAS  PubMed  Google Scholar 

  • Cheylan G, Granjon L (1998) Distribution of genetic diversity within and between western Mediterranean island populations of the black rat Rattus rattus (L 1758). Biol J Linn Soc 63:393–408

    Google Scholar 

  • Clague JJ (1989) Quaternary sea levels. In: Fulton RJ (eds) Quaternary geology of Canada and Greenland. Geological Survey of Canada, Geology of Canada, No. 1. (Also Geological Survey of America, The Geology of America, v. K-1.), pp 43–45

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello AB, Down TE, Pollard SM, Pacas CJ, Taylor EB (2003) The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces: Salmonidae). Evolution 57:328–344

    Article  CAS  PubMed  Google Scholar 

  • Crispo E, Bentzen P, Reznick DN, Kinnison MT, Hendry AP (2006) The relative influence of natural selection and geography on gene flow in guppies. Mol Ecol 15:49–62

    Article  CAS  PubMed  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Publishing Company, Minneapolis

    Google Scholar 

  • Deiner K, Garza JC, Coey R, Girman DJ (2007) Population structure and genetic diversity of trout (Oncorhynchus mykiss) above and below natural and man-made barriers in the Russian River, California. Conserv Genet 8:437–454

    Article  Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  CAS  Google Scholar 

  • Dunham JB, Vinyard GL, Rieman BE (1997) Habitat fragmentation and extinction risk of Lahontan cutthroat trout. N Am J Fish Manag 17:1126–1133

    Article  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol Ecol 13:67–80

    Article  CAS  PubMed  Google Scholar 

  • Fukushima M, Kameyama S, Kaneko M, Nakao K, Steel EA (2007) Modeling the effects of dams on freshwater fish distributions in Hokkaido, Japan. Freshw Biol 52:1511–1524

    Article  Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT version 2.9.3, a program to estimate and test gene diversities and fixation indices. www.unil.ch/izea/softwares/fstat.html (Updated from Goudet (1995))

  • Guy TJ, Gresswell RE, Banks MA (2008) Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii. Can J Fish Aquat Sci 65:1749–1762

    Article  Google Scholar 

  • Hagenblad J, Olsson M, Parker HG, Ostrander EA, Ellegren H (2009) Population genomics of the inbred Scandinavian wolf. Mol Ecol 18:1341–1351

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KLD (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Mol Ecol 16:1413–1425

    Article  CAS  PubMed  Google Scholar 

  • Harig AL, Fausch KD (2002) Minimum habitat requirements for establishing translocated cutthroat trout populations. Ecol Appl 12:535–551

    Article  Google Scholar 

  • Hastings K (2005) Long-term persistence of isolated fish populations in the Alexander Archipelago. Unpublished Ph.D. dissertation, The University of Montana, Missoula, MT

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Heller R, Siegismund HR (2009) Relationship between three measures of genetic differentiation G ST, D EST, and GST: how wrong have we been? Mol Ecol 18:2080–2083

    Article  CAS  PubMed  Google Scholar 

  • Hinten G, Harriss F, Rossetto M, Baverstock PR (2003) Genetic variation and island biogeography: microsatellite and mitochondrial DNA variation in island populations of the Australian bush rat, Rattus fuscipes greyii. Conserv Genet 4:759–778

    Article  CAS  Google Scholar 

  • Hitt NP, Frissell CA, Muhlfeld CC, Allendorf FW (2003) Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, Oncorhynchus mykiss. Can J Fish Aquat Sci 60:1440–1451

    Article  Google Scholar 

  • Jones AG, Rosenqvist E, Berglund A, Avise JC (1999) Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics 152:1057–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics 143:1369–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • June JA (1981) Life history and habitat utilization of cutthroat trout (Salmo clarki) in a headwater stream on the Olympic Peninsula. University of Washington, Seattle, Washington, p 112

  • Kanda N, Leary RF, Spruell P, Allendorf FW (2002) Molecular genetic markers identifying hybridization between the Colorado River greenback cutthroat trout complex and Yellowstone cutthroat trout or rainbow trout. Trans Am Fish Soc 131:312–319

    Article  CAS  Google Scholar 

  • Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc B Biol Sci 272:553–560

    Article  Google Scholar 

  • Laikre L, Jorde PE, Ryman N (1998) Temporal change of mitochondrial DNA haplotype frequencies and female effective size in a brown trout (Salmo trutta) population. Evolution 52:910–915

    PubMed  Google Scholar 

  • Letcher BH, Nislow KH, Coombs JA, O’Donnell MJ, Dubreuil TL (2007) Population response to habitat fragmentation in a stream-dwelling brook trout population. PLoS ONE 2:e1139

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKiewicz M, Fletcher DE, Wilkins SD, DeWoody JA, Avise JC (2002) A genetic assessment of parentage in a natural population of dollar sunfish (Lepomis marginatus) based on microsatellite markers. Mol Ecol 11:1877–1883

    Article  CAS  PubMed  Google Scholar 

  • Mann D (1986) Wisconsin and Holocene glaciation in Southeast Alaska. In: Hamilton TD, Reed KM, Thorson RM) (eds) Glaciation in Alaska, the geological record. Alaska Geological Society, Anchorage, pp 237–265

    Google Scholar 

  • Mann DH, Hamilton TD (1995) Late pleistocene and Holocene paleoenvironments of the North Pacific coast. Quat Sci Rev 14:449–471

    Article  Google Scholar 

  • Milner AM, Robertson AL, Monaghan KA, Veal AJ, Flory EA (2008) Colonization and development of an Alaskan stream community over 28 years. Front Ecol Environ 6. doi:10.1890/060149

  • Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv Biol 16:1318–1323

    Article  Google Scholar 

  • Neville HM, Dunham JB, Peacock MM (2006) Landscape attributes and life history variability shape genetic structure of trout populations in a stream network. Landsc Ecol 21:901–916

    Article  Google Scholar 

  • Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362

    Article  PubMed  Google Scholar 

  • Nicholas JW (1978) A review of literature and unpublished information on cutthroat trout Salmo clarki clarki of the Willamette watershed. Oregon Department of Fish and Wildlife, Research and Development Section, Corvallis

    Google Scholar 

  • Nieminen M, Singer MC, Fortelius W, Schops K, Hanski I (2001) Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am Nat 157:237–244

    Article  CAS  PubMed  Google Scholar 

  • Novinger DC, Rahel FJ (2003) Isolation management with artificial barriers as a conservation strategy for cutthroat trout in headwater streams. Conserv Biol 17:772–781

    Article  Google Scholar 

  • Ortego J, Aparicio JM, Cordero PJ, Calabuig G (2008) Individual genetic diversity correlates with the size and spatial isolation of natal colonies in a bird metapopulation. Proc R Soc B 275:2039–2047

    Article  PubMed  PubMed Central  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol. doi:10.1111/j.1365-294X.2008.03842.x

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard K, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahel FJ (2007) Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol 52:696–710

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 3.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rehe WG (2007) Influence of landscape-scale variables on the age and growth of coastal cutthroat trout Oncorhynchus clarkii clarkii in headwater streams. Oregon State University, Corvallis

    Google Scholar 

  • Rexstad E, Burnham KP (1991) Users guide for interactive program CAPTURE. Colorado Cooperative Fish & Wildlife Research Unit, Colorado State University, Fort Collins

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Riddihough RP (1982) Contemporary movements and tectonics on Canada’s west coast: a discussion. Tectonophysics 86:319–341

    Article  Google Scholar 

  • Ryman N, Leimar O (2009) G ST is still a useful measure of genetic differentiation—a comment on Jost’s D. Mol Ecol 18:2084–2087

    Article  PubMed  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, Jackson D, de Sauvage F, Jacob H, Fishman MC (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics 58:219–232

    Article  CAS  PubMed  Google Scholar 

  • Soule ME, Mills LS (1998) No need to isolate genetics. Science 282:1658–1659

    Article  Google Scholar 

  • Spruell P, Bartron ML, Kanda N, Allendorf FW (2001) Detection of hybrids between bull trout (Salvelinus confluentus) and brook trout (Salvelinus fontinalis) using PCR primers complementary to interspersed nuclear elements. Copeia 2001(4):1093–1099

    Article  Google Scholar 

  • Steinberg EK, Lindner KR, Gallea J, Maxwell A, Meng J, Allendorf FW (2002) Rates and patterns of microsatellite mutations in pink salmon. Mol Biol Evol 19:1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont M (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Notes 8:299–301

    Article  Google Scholar 

  • Taylor EB, Stamford MD, Baxter JS (2003) Population subdivision in westslope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications. Mol Ecol 12:2609–2622

    Article  CAS  PubMed  Google Scholar 

  • Trizio I, Crestanello B, Galbusera P, Wauters LA, Tosi G, Matthysen E, Hauffe HC (2005) Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps. Mol Ecol 14:469–481

    Article  CAS  PubMed  Google Scholar 

  • Trotter PC (1989) Coastal cutthroat trout: a life history compendium. Trans Am Fish Soc 118:463–473

    Article  Google Scholar 

  • USFS (1997) Tongass National Forest land and resource management plan. USDA Forest Service, Juneau

  • Wang SZ, Hard J, Utter F (2001) Salmonid inbreeding: a review. Rev Fish Biol Fish 11:301–319

    Article  Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Warren ML, Pardew MG (1998) Crossings as barriers to small-stream fish movement. Trans Am Fish Soc 127:637–644

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wenburg JK, Bentzen P, Foote CJ (1998) Microsatellite analysis of genetic population structure in an endangered salmonid: the coastal cutthroat trout (Oncorhynchus clarki clarki). Mol Ecol 7:733–749

    Article  CAS  Google Scholar 

  • White TA, Searle JB (2007) Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol Ecol 16:2005–2016

    Article  CAS  PubMed  Google Scholar 

  • White GC, Burnham KP, Otis DL, Anderson DR (1978) Users manual for program CAPTURE. Utah State University Press, Logan

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Wofford JEB, Gresswell RE, Banks MA (2005) Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecol Appl 15:628–637

    Article  Google Scholar 

  • Wyatt B (1959) Observations on the movements and reproduction of the Cascade form of cutthroat trout. Oregon State University, Corvallis

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

  • Yue GH, David L, Orban L (2007) Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129:329–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

E. Tucker assisted with map creation and fieldwork. S. Friedman assisted with field collections. L. Chikhi provided the modified version of BAYESASS. We thank S. McCairns and N. Ryman for helpful discussions. Three anonymous reviewers provided valuable comments on an earlier draft of this manuscript. Support was provided by the U.S. Fish and Wildlife Service (Alaska Region) and the Tongass National Forest. KH also received support from a National Science Foundation Graduate Research and Training grant to the University of Montana (NSF-GRT-9553611 to P. Kukuk, C. Brewer and FWA). ARW was supported by the National Science Foundation (NSF-OISE-0601864) during the preparation of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Whiteley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10592_2010_83_MOESM1_ESM.doc

Fig. S1. Regression used to estimate time since isolation for each above-barrier population. Carbon 14 date (years before present) was regressed on log-transformed elevation (R 2 = 0.92, P < 0.001). Labels on points are elevation (meters above sea level) (DOC 74 kb)

10592_2010_83_MOESM2_ESM.doc

Table S1 Summary of microsatellite loci. Number of alleles and allele size ranges are shown in base pairs (bp) for entire data set (DOC 79 kb)

10592_2010_83_MOESM3_ESM.xls

Table S2 Allele frequencies for coastal cutthroat trout in southeast Alaska. Alleles sizes are given in base pairs (XLS 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteley, A.R., Hastings, K., Wenburg, J.K. et al. Genetic variation and effective population size in isolated populations of coastal cutthroat trout. Conserv Genet 11, 1929–1943 (2010). https://doi.org/10.1007/s10592-010-0083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0083-y

Keywords

Navigation