Skip to main content

Advertisement

Log in

Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat destruction and fragmentation are known to strongly affect dispersal by altering the quality of the environment between populations. As a consequence, lower landscape connectivity is expected to enhance extinction risks through a decrease in gene flow and the resulting negative effects of genetic drift, accumulation of deleterious mutations and inbreeding depression. Such phenomena are particularly harmful for amphibian species, characterized by disjunct breeding habitats. The dispersal behaviour of amphibians being poorly understood, it is crucial to develop new tools, allowing us to determine the influence of landscape connectivity on the persistence of populations. In this study, we developed a new landscape genetics approach that aims at identifying land-uses affecting genetic differentiation, without a priori assumptions about associated ecological costs. We surveyed genetic variation at seven microsatellite loci for 19 Alpine newt (Mesotriton alpestris) populations in western Switzerland. Using strips of varying widths that define a dispersal corridor between pairs of populations, we were able to identify land-uses that act as dispersal barriers (i.e. urban areas) and corridors (i.e. forests). Our results suggest that habitat destruction and landscape fragmentation might in the near future affect common species such as M. alpestris. In addition, by identifying relevant landscape variables influencing population structure without unrealistic assumptions about dispersal, our method offers a simple and flexible tool of investigation as an alternative to least-cost models and other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akaike H (1974) New look at statistical-model identification. IEEE Trans Automat Contr AC19:716–723

    Article  Google Scholar 

  • Anderson DR, Burnham KP, White GC (2001) Kullback-Leibler information in resolving natural resource conflicts when definitive data exist. Wildl Soc Bull 29:1260–1270

    Google Scholar 

  • Arens P, van der Sluis T, van’t Westende WPC, Vosman B, Vos CC, Smulders MJM (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landscape Ecol 22:1489–1500

    Article  Google Scholar 

  • Arnaud JF (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landscape Ecol 18:333–346

    Article  Google Scholar 

  • Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines—judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71

    Article  Google Scholar 

  • Bockelmann AC, Reusch TBH, Bijlsma R, Bakker JP (2003) Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol 12:505–515

    Article  CAS  PubMed  Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206

    Article  Google Scholar 

  • Broquet T, Berset-Braendli L, Emaresi G, Fumagalli L (2007) Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv Genet 8:509–511

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference—a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carr LW, Fahrig L (2001) Effect of road traffic on two amphibian species of differing vagility. Conserv Biol 15:1071–1078

    Article  Google Scholar 

  • Castellano S, Balletto E (2002) Is the partial mantel test inadequate? Evolution 56:1871–1873

    PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Eastman JR (2002) Idrisi 32.2. Clark University, Worcester. http://www.clarklabs.org

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF (1995) Effect of road traffic on amphibian density. Biol Conserv 73:177–182

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Article  CAS  PubMed  Google Scholar 

  • Garner TWJ, Schmidt BR, Hoeck P, Van Buskirk J (2003) Di- and tetranucleotide microsatellite markers for the Alpine newt (Triturus alpestris): characterization and cross-priming in five congeners. Mol Ecol Notes 3:186–188

    Article  CAS  Google Scholar 

  • Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490

    Article  CAS  PubMed  Google Scholar 

  • Gill D (1978) The metapopulation ecology of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Ecol Monogr 48:145–166

    Article  Google Scholar 

  • Goudet J (2001) Fstat (version 2.9.3): a program to estimate and test gene diversities and fixation indices. University of Lausanne. Available at: http://www2.unil.ch/popgen/softwares/fstat.htm

  • Goudet J, Raymond M, deMeeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    CAS  PubMed  Google Scholar 

  • Grossenbacher K (1988) Atlas de distribution des amphibians de Suisse. Ligue Suisse pour la protection de la Nature, Basel

    Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219

    Article  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics—brief history and conceptual domain. Biol J Linn Soc 42:3–16

    Article  Google Scholar 

  • Hanski I, Gilpin M (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, London

    Google Scholar 

  • Hitchings SP, Beebee TJC (1996) Persistence of British natterjack toad Bufo calamita Laurenti (Anura: Bufonidae) populations despite low genetic diversity. Biol J Linn Soc 57:69–80

    Google Scholar 

  • Jehle R, Sinsch U (2007) Wanderleistung und Orientierung von Amphibien: eine Übersicht. Zeitschrift für Feldherpetologie 14:137–152

    Google Scholar 

  • Jepsen JU, Baveco JM, Topping CJ, Verboom J, Vos CC (2005) Evaluating the effect of corridors and landscape heterogeneity on dispersal probability: a comparison of three spatially explicit modelling approaches. Ecol Modell 181:445–459

    Article  Google Scholar 

  • Johansson M, Primmer CR, Sahlsten J, Merila J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob Chang Biol 11:1664–1679

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Kindlmann P, Aviron S, Burel F (2005) When is landscape matrix important for determining animal fluxes between resource patches? In: 6th World Congress of the international-association-for-landscape-ecology (IALE), Darwin, AUSTRALIA, pp 150–158

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manly BGF (1997) Randomisation and Monte Carlo methods in biology, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Marsh DM, Milam GS, Gorham NR, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19:2004–2008

    Article  Google Scholar 

  • Meyer AH, Schmidt BR, Grossenbacher K (1998) Analysis of three amphibian populations with quarter-century long time-series. Proc R Soc Lond B Biol Sci 265:523–528

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Opdam P (1990) Dispersal in fragmented populations: the key to survival. In: Bunce RGH, Howard DC (eds) Species dispersal in agricultural habitats. Belhaven Press, London, pp 3–17

    Google Scholar 

  • Opdam P, Van Apeldoorn R, Schotmann R, Kalkhoven J (1993) Population responses to landscape fragmentation. In: Vos CC, Opdam P (eds) Landscape ecology of a stressed environment. Chapman and Hall, London, pp 147–171

    Google Scholar 

  • Pabijan M, Babik W (2006) Genetic structure in northeastern populations of the Alpine newt (Triturus alpestris): evidence for post-Pleistocene differentiation. Mol Ecol 15:2397–2407

    Article  CAS  PubMed  Google Scholar 

  • Pellet J, Guisan A, Perrin N (2004) A concentric analysis of the impact of urbanization on the threatened European tree frog in an agricultural landscape. Conserv Biol 18:1599–1606

    Article  Google Scholar 

  • Perret N, Pradel R, Miaud C, Grolet O, Joly P (2003) Transience, dispersal and survival rates in newt patchy populations. J Anim Ecol 72:567–575

    Article  Google Scholar 

  • Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetol J 13:175–178

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. http://pritch.bsd.uchicago.edu/software/structure2_2.html

    Google Scholar 

  • Raufaste N, Rousset F (2001) Are partial mantel tests adequate? Evolution 55:1703–1705

    CAS  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Rousset F (2002) Partial mantel tests: reply to Castellano and Balletto. Evolution 56:1874–1875

    Google Scholar 

  • Semlitsch RD (2002) Critical elements for biologically based recovery plans of aquatic-breeding amphibians. Conserv Biol 16:619–629

    Article  Google Scholar 

  • Semlitsch RD (2003) Conservation of pond-breeding amphibians. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Institution, Washington, DC, pp 8–23

    Google Scholar 

  • Sinsch U (1990) Migration and orientation in anuran amphibians. In: International symposium on homing in animals. Rome, Italy, pp 65–79

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Stevens VM, Verkenne C, Vandewoestijne S, Wesselingh RA, Baguette M (2006) Gene flow and functional connectivity in the natterjack toad. Mol Ecol 15:2333–2344

    Article  CAS  PubMed  Google Scholar 

  • Swisstopo (2003) Vector25. Office Fédéral de la Topographie, Bern

    Google Scholar 

  • Team RDC (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Trenham PC, Koenig WD, Mossman MJ, Stark SL, Jagger LA (2003) Regional dynamics of wetland-breeding frogs and toads: Turnover and synchrony. Ecol Appl 13:1522–1532

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. http://www.microchecker.hull.ac.uk/

    Google Scholar 

  • Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608

    Article  CAS  PubMed  Google Scholar 

  • Waldick RC, Freedman B, Wassersug RJ (1999) The consequences for amphibians of the conversion of natural, mixed-species forests to conifer plantations in southern New Brunswick. Can Field-Nat 113:408–418

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST not equal 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wiens JA (1997) Metapopulation dynamics and landscape ecology. In: Hanski I, Gilpin M (eds) Metapopulation biology. Academic Press, San Diego, pp 43–68

    Chapter  Google Scholar 

  • Wiens JA, Stenseth NC, Vanhorne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to T. Broquet, P. Fontanillas, J. Goudet, N. Perrin and two anonymous reviewers for their comments on earlier versions of this manuscript. We also thank the Conservation de la faune et de la nature in St-Sulpice (Switzerland) for capture authorisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Emaresi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emaresi, G., Pellet, J., Dubey, S. et al. Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12, 41–50 (2011). https://doi.org/10.1007/s10592-009-9985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9985-y

Keywords

Navigation