Skip to main content

Founder effect and bottleneck signatures in an introduced, insular population of elk

Abstract

The population of elk (Cervus elaphus roosevelti) inhabiting Afognak Island, Alaska, USA arose from an introduction of 8 individuals from an established population in Washington, USA in 1929, and recently peaked at approximately 1,400 individuals. We examined indices of diversity for 15 microsatellite loci in the Afognak population and compared them to levels in the parent population to determine effects of translocation and demography on genetic variation. The Afognak population differed significantly (P < 0.0001) from the source population in both allele and genotype frequencies. Allelic richness, number of private alleles and multilocus heterozygosity, but not percent loci polymorphic, were significantly lower in Afognak elk. Mean inbreeding coefficients within Afognak (f = 0.019) and source (f = −0.006) populations did not differ significantly from zero. Despite the demographic bottleneck, no evidence of a genetic bottleneck in the Afognak population was detected using a test for heterozygosity excess or mode shift of allele frequencies. Simulations indicated that rapid population growth after the translocation resulted in heterozygosity excess for only 8 years. Conversely, a statistic testing for a bottleneck signature in the ratio of allele number to allele size range (M-ratio) was significant for both the Afognak and source populations, suggesting that the Afognak population had effectively undergone serial bottlenecks. Nonetheless, Afognak failed to show a smaller M-ratio than the parent population, suggesting a failure of that statistic to detect the bottleneck associated with introduction. We show that a severe bottleneck followed by rapid population growth may be undetectable using available tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Beschta RL, Ripple WJ (2008) Wolves, trophic cascades, and rivers in the Olympic National Park, USA. Ecohydrology 1:118–130

    Article  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SLF, Hawkins GA et al (1994) A genetic linkage map for cattle. Genetics 136:619–639

    CAS  PubMed  Google Scholar 

  • Buchanan FC, Crawford AM (1993) Ovine microsatellites at OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim Genet 24:145

    CAS  PubMed  Article  Google Scholar 

  • Burris OE, McKnight DE (1973) Game transplants in Alaska. Wildl. Tech. Bull. 4. Alaska Department of Fish and Game, Juneau, Alaska

  • Busch JD, Waser PM, DeWoody A (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2463

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • DeWoody JA, Honeycutt RL, Skow LC (1995) Microsatellite markers in white-tailed deer. J Hered 86:317–319

    CAS  PubMed  Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Friemer NB (1994) Mutational process of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  CAS  Google Scholar 

  • Eberhardt LE, Eberhardt LL, Tiller BL, Cadwell LL (1996) Growth of an isolated elk population. J Wildl Manage 60:369–373

    Article  Google Scholar 

  • England PR, Osler GHR, Woodsworth LM, Montgomery ME, Briscoe DA, Frankham R (2003) Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv Genet 4:595–604

    Article  CAS  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Guinand B, Scribner KT (2003) Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. C R Biol 326:S61–S67

    Article  PubMed  Google Scholar 

  • Houlden BA, England PR, Taylor AC, Greville WD, Sherwin WB (1996) Low genetic variability of the koala Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck. Mol Ecol 5:269–281

    CAS  PubMed  Google Scholar 

  • Houston DB, Schreiner EG, Moorhead BB, Krueger KA (1990) Elk in Olympic National Park: will they persist over time? Nat Areas J 10(11):6–11

    Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872

    Article  CAS  PubMed  Google Scholar 

  • Kuo C-H, Janzen FJ (2003) bottlesim: a bottleneck simulation program for long-lived species with overlapping generations. Mol Ecol Notes 3:669–673

    Article  CAS  Google Scholar 

  • Lenney Williams C, Serfass TL, Cogan R, Rhodes OE Jr (2002) Microsatellite variation in the reintroduced Pennsylvania elk herd. Mol Ecol 11:1299–1310

    Article  Google Scholar 

  • Lewis PO, Zaykin D (2002) GDA (genetic data analysis): computer program for the analysis of allelic data. Version 1.1. Available via http://lewis.eeb.uconn.edu/lewishome/software.htm

  • Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Marshall JC, Kingsbury BA, Minchella DJ (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conserv Genet 10:465–476

    Article  Google Scholar 

  • Maudet C, Miller C, Bassano B, Breitenmoser-Wursten C, Gauthier D, Obexer-Ruff G et al (2002) Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex (ibex)]. Mol Ecol 11:421–436

    Article  CAS  Google Scholar 

  • Moore SS, Byrne K, Berger KT, Barendse W, McCarthy F, Womack JE et al (1994) Characterization of 65 bovine microsatellites. Mamm Genome 5:84–90

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Pearce DE, Arndt AD, Valenzuela N, Miller BA, Cantarelli V, Sites JW (2006) Estimating population structure under nonequilibrium conditions in a conservation context: continent-wide population genetics of the giant Amazon river turtle. Mol Ecol 15:985–1006

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Polzhien RO, Hamr J, Mallory FF, Strobeck C (2000) Micosatellite analysis of North American wapiti (Cervus elaphus) populations. Mol Ecol 9:1561–1576

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Spear SF, Peterson R, Matocq MD, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conserv Genet 7:605–611

    Article  Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Spong G, Hellborg L (2002) A near-extinction event in lynx: do microsatellites tell the tale? Conserv Ecol 6(1):15. [online] URL: http://www.consecol.org/vol6/iss1/art15

    Google Scholar 

  • Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, Ciampolini R, Lepingle A et al (1994) A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome 5:288–297

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

  • Wilson GA, Strobeck C, Wu L, Coffin JW (1997) Characterization of microsatellite loci in caribou (Rangifer tarandus), and their use in other artiodactyls. Mol Ecol 6:697–699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Federal Aid in Wildlife Restoration, the Rocky Mountain Elk Foundation, and the Institute of Arctic Biology, University of Alaska Fairbanks provided funding. We thank J. Smith, Washington Dept. of Wildlife, biologists at Olympic National Park and Alaskan hunters for contributing elk tissue samples. We thank M. Van Daele for laboratory assistance and K. Colson and one anonymous reviewer for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris J. Hundertmark.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hundertmark, K.J., Van Daele, L.J. Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11, 139–147 (2010). https://doi.org/10.1007/s10592-009-0013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0013-z

Keywords

  • Cervus elaphus
  • Genetic diversity
  • Heterozygosity excess
  • M-ratio
  • Microsatellites
  • Wildlife introductions