Skip to main content

Advertisement

Log in

Unprecedented long-term genetic monomorphism in an endangered relict butterfly species

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Multi-locus monomorphism in microsatellites is practically non-existent, with one notable exception, the island fox (Urocyon littoralis dickeyi) population on San Nicolas island off the coast of southern California, having been called “the most monomorphic sexually reproducing animal population yet reported”. Here, we present the unprecedented long-term monomorphism in relict populations of the highly endangered Parnassius apollo butterfly, which is protected by CITES and classified as “threatened” by the IUCN. The species is disjunctly distributed throughout the western Palaearctic and has occurred in several small remnant populations outside its main distribution area. We screened 78 individuals from 1 such relict area (Mosel valley, Germany) at 16 allozyme and 6 microsatellite loci with the latter known to be polymorphic in this species elsewhere. From the same area, we also genotyped 55 museum specimens sampled from 1895 to 1989 to compare historical and present levels of genetic diversity. However, none of all these temporal populations yielded any polymorphism. Thus, present and historical butterflies were completely monomorphic for the same fixed allele. This is the second study to report multi-locus monomorphism for microsatellites in an animal population and the first one to prove this monomorphism not to be the consequence of recent factors. Possible explanations for our results are a very low long-term effective population size and/or a strong historic bottleneck or founder event. Since the studied population has just recovered from a recent population breakdown (second half of twentieth century) and no signs of inbreeding depression have been detected, natural selection might have purged the population of weakly deleterious alleles, thus rendering it less susceptible to the usual negative corollaries of high levels of homozygosity and low effective population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 3490–3494. doi:10.1073/pnas.0306582101

  • Allendorf FW, Luikart G (2006) Conservation and the genetics of populations. Blackwell, London

    Google Scholar 

  • Assmann T, Nolte O, Reuter H (1994) Postglacial colonization of middle Europe by Carabus auronitens as revealed by population genetics (Coleoptera, Carabidae). In: Desender K, Dufrêne M, Loreau M, Luff M, Maelfait JP (eds) Carabid Beetles: Ecology and Evolution. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bereczki J, Pecsenye K, Peregovits L, Varga Z (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. J Zool Syst Evol Res 43:157–165. doi:10.1111/j.1439-0469.2005.00305.x

    Article  Google Scholar 

  • Besold J, Schmitt T, Tammaru T, Cassel-Lundhagen A (2008) Strong genetic impoverishment from the centre of distribution in southern Europe to peripheral baltic and isolated Scandinavian populations of the pearly heath butterfly. J Biogeogr 35:2090–2101

    Article  Google Scholar 

  • Besold J, Huck S, Schmitt T (2008b) Allozyme polymorphisms in the small heath Coenonympha pamphilus: recent ecological selection or old biogeographical signal? Ann Zool Fenn 45:217–228

    Google Scholar 

  • Cassel A, Tammaru T (2003) Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero: Lepidoptera, Nymphalidae); implications for conservation. Conserv Genet 4:83–93. doi:10.1023/A:1021884832122

    Article  CAS  Google Scholar 

  • De Lattin G (1967) Grundriß der Zoogeographie. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Debinski DM (1994) Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gillettii. Heredity 70:25–30

    Google Scholar 

  • Descimon H (1995) La conservation des Parnassius en France: aspects zoogéographiques, écologiques, démographiques et génétiques. Editions OPIE 1:1–54

    Google Scholar 

  • Figurny-Puchalska E, Gadeberg RME, Boomsma JJ (2000) Comparison of genetic population structure of the large blue butterfly Maculinea nausithous and M. teleius. Biodivers Conserv 9:419–432. doi:10.1023/A:1008970232079

    Article  Google Scholar 

  • Finger A, Zachos FE, Schmitt T, Meyer M, Assmann T, Habel JC (2008) The genetic status of the Violet Copper Lycaena helle—a relict of the cold past in times of global warming. Ecography (in press)

  • Frankham R, Gilligan DM, Morris D, Briscoe DA (2001) Inbreeding and extinction: effects of purging. Conserv Genet 2:279–285. doi:10.1023/A:1012299230482

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gadeberg RME, Boomsma JJ (1997) Genetic population structure of the large blue butterfly Maculinea alcon in Denmark. J Insect Conserv 1:99–111. doi:10.1023/A:1018439211244

    Article  Google Scholar 

  • Habel JC, Schmitt T, Müller P (2005) The fourth paradigm pattern of postglacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J Biogeogr 32:1489–1497

    Google Scholar 

  • Habel JC, Meyer M, Schmitt T, Assmann T (2008) Polymorphic microsatellite loci in the endangered butterfly Lycaena helle (Lepidoptera: Lycaenidae). Eur J Entomol 105:361–362

    CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474. doi:10.1046/j.1365-294X.2002.01644.x

    Article  PubMed  Google Scholar 

  • Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam

    Google Scholar 

  • Haubrich K, Schmitt T (2007) Cryptic differentiation in alpine-endemic, high altitude butterflies reveals down-slope glacial refugia. Mol Ecol 16:3643–3658. doi:10.1111/j.1365-294X.2007.03424.x

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Beaton MJ (1993) Methodologies for allozyme analysis using cellulose acetat electrophoresis. Helena Laboratories, Beaumont

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • IUCN (1996) The 1996 IUCN red list of threatened animals. IUCN Publications Service Unit, Cambridge

    Google Scholar 

  • Kawamura K, Kubota M, Furukawa M, Harada Y (2007) The genetic structure of endangered indigenous populations of the amago salmon, Oncorhynchus masou ishikawae, in Japan. Conserv Genet 8:1163–1176. doi:10.1007/s10592-006-9271-1

    Article  Google Scholar 

  • Kinkler H, Löser S, Rehnelt K (1987) 10 Jahre Erforschung des Moselapollofalters (Parnassius apollo vinningensis STICHEL 1899, Lepidoptera, Papilionidae) im modernen Weinbaugebiet der Mosel—ein Beitrag zu seiner Rettung. Mitt Arbeitsgem rh-westf Lepid V/2:53–100

    Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342

    Google Scholar 

  • Lesica P, Allendorf FW (1995) When peripheral populations are valuable for conservation. Conserv Biol 9:753–760. doi:10.1046/j.1523-1739.1995.09040753.x

    Article  Google Scholar 

  • Löser S, Rehnelt K (1983) Das rezente Verbreitungsareal von Parnassius apollo vinningensis Stichel, 1899 (Lepidoptera, Papilionidae) im modernen Weinbaugebiet der Mosel. Verh SIEEC X, Budapest

    Google Scholar 

  • Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681

    Article  Google Scholar 

  • Mandrioli M, Borsatti F, Mola L (2006) Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomol Exp Appl 120:239–244. doi:10.1111/j.1570-7458.2006.00451.x

    Article  CAS  Google Scholar 

  • Meglécz E, Solignac M (1998) Microsatellite loci for Parnassius mnemosyne (Lepidoptera). Hereditas 128:179–180. doi:10.1111/j.1601-5223.1998.00179.x

    Article  Google Scholar 

  • Meglécz E, Petenian F, Danchin E, Coer D’Acier A, Rasplus J-Y, Faure E (2004) High similarity between flanking regions of different microstatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydrias aurinia. Mol Ecol 13:1693–1700. doi:10.1111/j.1365-294X.2004.02163.x

    Article  PubMed  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103. doi:10.1038/nature06922

    Article  CAS  PubMed  Google Scholar 

  • Nakonieczny M, Kedziorski A, Michalczyk K (2007) Apollo Butterfly (Parnassius apollo L.) in Europe—its history, decline and perspectives of conservation. Funct Ecosyst Comm 1:56–79

    Google Scholar 

  • Petenian F, Meglécz E, Genson G, Rasplus J-Y, Faure E (2005) Isolation and characterization of polymorphic microsatellites in Parnassius apollo and Euphydryas aurinia (Lepidoptera). Mol Ecol Notes 5:243–245. doi:10.1111/j.1471-8286.2005.00891.x

    Article  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Reimann T, Assmann T, Nolte O, Reuter H, Huber C, Weber F (2002) The paleo-ecology of Carabus auronitens Fabricius: characterization and localization of glacial refugia in southern France and reconstruction of postglacial expansion routes by means of allozyme polymorphisms. Abh Naturwissenschaftl Ver Hamburg NF 35:1–151

    Google Scholar 

  • Ridgway T (2005) Allozyme electrophoresis still represents a powerful technique in the management of coral reefs. Biodivers Conserv 14:135–149. doi:10.1007/s10531-005-4054-4

    Article  Google Scholar 

  • Schmitt T, Haubrich K (2008) The genetic strucutre of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Mol Ecol 17:2194–2207. doi:10.1111/j.1365-294X.2007.03687.x

    Article  PubMed  Google Scholar 

  • Schmitt T, Hewitt GM (2004a) The genetic pattern of population threat and loss: a case study of butterflies. Mol Ecol 13:21–31. doi:10.1046/j.1365-294X.2004.02020.x

    Article  CAS  PubMed  Google Scholar 

  • Schmitt T, Hewitt GM (2004b) Molecular Biogeography of the arctic-alpine disjunct burnet moth species Zygaena exulans (Zygaenidae, Lepidoptera) in the Pyrenees and Alps. J Biogeogr 31:885–893. doi:10.1111/j.1365-2699.2004.01079.x

    Article  Google Scholar 

  • Schmitt T, Müller P (2007) Limited hybridization along a large contact zone between two genetic lineages of the butterfly Erebia medusa (Satyrinae, Lepidoptera) in Central Europe. J Zool Syst Evol Res 45:39–46. doi:10.1111/j.1439-0469.2006.00404.x

    Article  Google Scholar 

  • Schmitt T, Seitz A (2004) Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera). J Biogeogr 31:137–144. doi:10.1111/j.1365-2699.2004.01079.x

    Article  Google Scholar 

  • Schmitt T, Gießl A, Seitz A (2003) Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe? Evidence from population genetics. Biol J Linn Soc 80:529–538. doi:10.1046/j.1095-8312.2003.00261.x

    Article  Google Scholar 

  • Schmitt T, Röber S, Seitz A (2005a) Is the last glaciation the only relevant event for the present genetic population structure of the Meadow Brown butterfly Maniola jurtina (Lepidoptera: Nymphalidae)? Biol J Linn Soc 85:419–431. doi:10.1111/j.1095-8312.2005.00504.x

    Article  Google Scholar 

  • Schmitt T, Varga Z, Seitz A (2005b) Are Polyommatus hispana and Polyommatus slovacus bivoltine Polyommatus coridon (Lepidoptera: Lycaenidae)? The discriminatory value of genetics in the taxonomy. Org Divers Evol 5:297–307. doi:10.1016/j.ode.2005.01.001

    Article  Google Scholar 

  • Schmitt T, Cizek O, Konvicka M (2005c) Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. Biol Conserv 123:11–18. doi:10.1016/j.biocon.2004.09.018

    Article  Google Scholar 

  • Schmitt T, Hewitt GM, Müller P (2006a) Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J Evol Biol 19:108–113. doi:10.1111/j.1420-9101.2005.00980.x

    Article  CAS  PubMed  Google Scholar 

  • Schmitt T, Habel JC, Zimmermann M, Müller P (2006b) Genetic differentiation of the Marbled White butterfly, Melanargia galathea, accounts for glacial distribution patterns and postglacial range expansion in southeastern Europe. Mol Ecol 15:1889–1901. doi:10.1111/j.1365-294X.2006.02900.x

    Article  CAS  PubMed  Google Scholar 

  • Schmitt T, Rákosy L, Abadjiev S, Müller P (2007) Multiple differentiation centres of a non-Mediterranean butterfly species in south-eastern Europe. J Biogeogr 34:939–950. doi:10.1111/j.1365-2699.2006.01684.x

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. doi:10.1111/j.1461-0248.2006.00889.x

    Article  PubMed  Google Scholar 

  • Steward JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613. doi:10.1016/S0169-5347(01)02338-2

    Article  Google Scholar 

  • Thévenon S, Couvet D (2002) The impact of inbreeding depression on population survival depending on demographic parameters. Anim Conserv 5:53–60

    Google Scholar 

  • Tolman T, Lewington R (1997) Field guide butterflies of Britain and Europe. Harper Collins, London

    Google Scholar 

  • Van Swaay CAM, Warren M (1999) Red Data Book of European butterflies (Rhopalocera). Nature and environment 99. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Watts PC, Saccheri J, Kemp SJ, Thompson DJ (2006) Population structure and the impact of regional and local habitat isolation upon levels of genetic diversity of the endangered damselfly Coenagrion mercuriale (Odonata: Zygoptera). Freshw Biol 51:193–205. doi:10.1111/j.1365-2427.2005.01478.x

    Article  CAS  Google Scholar 

  • Watts PC, Thompson DJ, Allen KA, Kemp SJ (2007) How useful is DNA extracted from the legs of archieved insects for microsatellite-based population genetic analyses? J Insect Conserv 11:195–198. doi:10.1007/s10841-006-9024-y

    Article  Google Scholar 

  • Williams BL, Brawn JD, Paige KN (2003) Landscape scale genetic effects of habitat fragmentation on a high gene flow species: Speyeria idalia (Nymphalidae). Mol Ecol 12:11–20. doi:10.1046/j.1365-294X.2003.01700.x

    Article  CAS  PubMed  Google Scholar 

  • Zachos FE, Althoff C, v Steynitz Y, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67. doi:10.1007/s10344-006-0065-z

    Article  Google Scholar 

  • Zhang D-X (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509. doi:10.1016/j.tree.2004.07.020

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge a grant from the Ministère de la Culture, de l’Enseignement Superieur et de la Recherche, Luxembourg (grant number BFR05/118 Habel), the Musée national d’histoire naturelle Luxembourg and the DFG (grant number SCHM 1659/3-1 and 3–2) making this study possible. We thank the local authorities in Koblenz for giving us a sampling permit, H. Kinkler (Leverkusen, D), A. Schmidt (Koblenz, D) and M. Weitzel (Trier, D) for information about sample localities and the population dynamics and Marco Zimmermann (Bonn, D) for field assistance. We are grateful for samples from museum collections of the “Zentrum für Biodokumentation des Saarlandes” (Reden, Germany) and the Alexander-Koenig–Forschungsmuseum (Bonn, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Christian Habel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habel, J.C., Zachos, F.E., Finger, A. et al. Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conserv Genet 10, 1659–1665 (2009). https://doi.org/10.1007/s10592-008-9744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9744-5

Keywords

Navigation