Skip to main content

Advertisement

Log in

The influence of historical landscape change on genetic variation and population structure of a terrestrial salamander (Plethodon cinereus)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Forest loss and fragmentation is expected to shape the genetic structure of amphibian populations and reduce genetic variation. Another factor widely understood to have impacted these same parameters in North America is the range expansion that occurred following glacial retreat at the end of the Pleistocene. The Eastern Red-Backed Salamander (Plethodon cinereus) has been subjected to both processes. In this context, we investigated the historical events that are likely to have shaped genetic variation in this species using a panel of six microsatellite markers screened on individuals sampled across ten localities in northeastern Indiana, USA. We found low genetic diversity across forest patches and minimal differentiation. We expected population structure associated with forest fragmentation to result from genetic drift in isolation but instead found that a balance between gene flow and drift was ~50 times more likely. Ratios of allele number and range (M), and coalescent modeling of population demography suggested the occurrence of marked historic decline in effective population size across the region. Taken together, the data point to a loss of genetic variation which preceded deforestation over the past 200 years. This result indicates an important role for ancient demographic processes in shaping current genetic variation that may make it difficult to detect the effect of recent habitat fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc R Soc Biol Sci Ser B 271:1293–1302

    Article  Google Scholar 

  • Austin JD, Lougheed SC, Neidrauer L, Chek AA, Boag PT (2002) Cryptic lineages in a small frog: the post-glacial history of the spring peeper, Pseudacris crucifer (Anura: Hylidae). Mol Phylogenet Evol 25:316–329

    Article  CAS  PubMed  Google Scholar 

  • Baker RG (1998) Late Quaternary environmental changes in the Midwestern United States. In: Lannoo MJ (ed) Status & conservation of Midwestern amphibians. University of Iowa Press, Iowa City, pp 3–8

    Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    CAS  PubMed  Google Scholar 

  • Beebee TJ, Rowe G (2000) Microsatellite analysis of natterjack toad Bufo calamita Laurenti populations: consequences of dispersal from a Pleistocene refugium. Biol J Linn Soc 69:367–381

    Article  Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608

    Article  Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20:1004–1010

    CAS  PubMed  Google Scholar 

  • Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in a continuous habitat. Heredity 98:53–60

    Article  CAS  PubMed  Google Scholar 

  • Church SA, Kraus JM, Mitchell JC, Church DR, Taylor DR (2003) Evidence for multiple Pleistocene refugia in the postglacial expansion of the eastern tiger salamander, Ambystoma tigrinum tigrinum. Evolution 57:372–383

    PubMed  Google Scholar 

  • Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc Lond B Biol Sci 266:2269–2274

    Article  Google Scholar 

  • Collins JP, Storfer A (2003) Amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98

    Article  Google Scholar 

  • Connors LM, Cabe PR (2003) Isolation of dinucleotide microsatellite loci from red-backed salamander (Plethodon cinereus). Mol Ecol Notes 3:131–133

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Demastes JW, Eastman JM, East JS, Spolsky C (2007) Phylogeography of the blue-spotted salamander, Ambystoma laterale (Caudata: Ambystomatidae). Am Midl Nat 157:149–161

    Article  Google Scholar 

  • de Maynaider PG, Hunter ML (1995) The relationship between forest management and amphibian ecology: a review of the North American literature. Environ Rev 3:230–261

    Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutation processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Feder ME (1983) Integrating the ecology and physiology of plethodontid salamanders. Herpetologica 39:291–310

    Google Scholar 

  • Ficetola GF, Garner TWJ, De Bernardi F (2007) Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei. Mol Ecol 16:1787–1797

    Article  PubMed  Google Scholar 

  • Funk WC, Tallmon DA, Allendorf FW (1999) Small effective population size in the long-toed salamander. Mol Ecol 8:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JR (1998) Genetic structure of redback salamander Plethodon cinereus poulations in continuous and fragmented forests. Biol Conserv 86:77–81

    Article  Google Scholar 

  • Goossens B, Chikhi L, Ancrenaz M, Lackman-Acrenaz I, Andau P, Bruford MW (2006) Genetic signature of anthropogenic population collapse in orang-utans. PLoS Biol 4:285–291

    Article  CAS  Google Scholar 

  • Guerry AD, Hunter MLJ (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conserv Biol 16:745–754

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Heatwole H (1962) Environmental factors influencing local distribution and activity of the salamander, Plethodon cinereus. Ecology 42:460–472

    Article  Google Scholar 

  • Herbeck LA, Larsen DR (1999) Plethodontid salamander response to silvicultural practices in Missouri Ozark forests. Conserv Biol 13:623–632

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Highton R (2005) Declines of eastern North American woodland salamanders. In: Lannoo M (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, pp 34–46

    Google Scholar 

  • Highton R, Webster TP (1976) Geographic protein variation and divergence in populations of the salamander Plethodon cinereus. Evolution 30:33–45

    Article  CAS  Google Scholar 

  • Hoffman EA, Blouin MS (2004a) Evolutionary history of the northern leopard frog; reconstruction of phylogeny, phylogeography, and historical changes in population demography from mitochondrial DNA. Evolution 58:145–159

    PubMed  Google Scholar 

  • Hoffman EA, Blouin MS (2004b) Historical data refute recent range contraction as a cause of low genetic diversity in isolated frog populations. Mol Ecol 13:271–276

    Article  PubMed  Google Scholar 

  • Holman JA (1995) Pleistocene amphibians and reptiles in North America. Oxford University Press, New York

    Google Scholar 

  • Holycross AT, Douglas ME (2007) Geographic isolation, genetic divergence, and ecological non-exchaneability define ESUs in a threatened sky-island rattlesnake. Biol Conserv 134:142–154

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  CAS  PubMed  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jackson MT (ed) (1997) The natural heritage of Indiana. Indiana University Press, Bloomington

    Google Scholar 

  • Jacobsen BH, Hansen MM, Loeschcke V (2005) Microsatellite DNA analysis of northern pike (Esok lucius L.) populations: insights into the genetic structure and demographic history of a genetically depauperate species. Biol J Linn Soc 84:91–101

    Article  Google Scholar 

  • Jehle R, Arntzen JW (2002) Microsatellite markers in amphibian conservation genetics. Herpetol J 12:1–9

    Google Scholar 

  • Kleeberger SR, Werner JK (1982) Home range and homing behavior of Plethodon cinereus in Northern Michigan. Copeia 1982:408–415

    Article  Google Scholar 

  • Kolozsvary MB, Swihart RK (1999) Habitat fragmentation and the distribution of amphibians: patch and landscape correlates in farmland. Can J Zool 77:1288–1299

    Article  Google Scholar 

  • Koontz T, Jones S (1998) Context for forest-related land use decisions in Indiana. In: Center for the study of institutions, population and environmental change working paper, Bloomington, pp 1–17

  • Larson A, Wake DB, Yanev KP (1984) Measuring gene flow among populations having high levels of genetic fragmentation. Genetics 106:293–308

    CAS  PubMed  Google Scholar 

  • Lee-Yaw JA, Irwin JT, Green DM (2008) Postglacial range expansion from northern refugia by the wood frog, Rana sylvatica. Mol Ecol 17:867–884

    CAS  PubMed  Google Scholar 

  • Lemmon EM, Lemmon AR, Cannatella DC (2007) Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris). Evolution 61:2086–2103

    Article  PubMed  Google Scholar 

  • Lesbarrères D, Primmer CR, Lodé T, Merilä J (2006) The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Ecoscience 13:531–538

    Article  Google Scholar 

  • Lindsey A, Crankshaw W, Qadir S (1965) Soil relations and distribution map of the vegetation of presettlement Indiana. Bot Gaz 126:155–163

    Article  Google Scholar 

  • Loader C (1999) Local regression and likelihood. Springer Mathematics, New York

    Google Scholar 

  • Luikart GL, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Marsh DM, Goicochea MA (2003) Monitoring terrestrial salamanders: biases caused by intense sampling and choice of cover objects. J Herpetol 37:460–466

    Article  Google Scholar 

  • Marsh DM, Thakur KA, Bulka KC, Clarke LB (2004) Dispersal and colonization through open fields by a terrestrial, woodland salamander. Ecology 85:3396–3405

    Article  Google Scholar 

  • Marsh DM, Milam GS, Gorham NP, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamanders movement. Conserv Biol 19:2004–2008

    Article  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ, Bareke H, Corritons R, Jetter N, Beckman NG, Gardner K, Seifert DE, Cabe PR (2007) Ecological and genetic evidence that low-order streams inhibit dispersal by red-backed salamanders (Plethodon cinereus). Can J Zool 85:319–327

    Article  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ, Corritone R, Little EC, Seifert DE, Cabe PR (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613

    Article  Google Scholar 

  • Martin BA, Shao G, Swihart RK, Parker GR, Tang L (2008) Implications of shared edge length between land cover types for landscape quality: the case of Midwestern US, 1940–1998. Landsc Ecol 23:391–402

    Article  Google Scholar 

  • Mathis A (1989) Do seasonal spatial patterns in a terrestrial salamander reflect reproductive behavior or territoriality? Copeia 1989:788–791

    Article  Google Scholar 

  • Mathis A (1991) Territories of male and female terrestrial salamanders: costs, benefits, and intersexual spatial associations. Oecologia 86:433–440

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a number of individuals. Genetics 89:538–590

    Google Scholar 

  • Nöel S, Ouellet M, Galois P, Lapointe F-J (2007) Impact of urban fragmentation on the genetic structure of the Eastern Red-Backed Salamander. Conserv Genet 8:599–606

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reduction in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Porey D, Micacchion M, Hetherinton TE (2004) Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biol Conserv 120:399–409

    Article  Google Scholar 

  • Pough HF, Smith EM, Rhodes DH, Collazo A (1987) The abundance of salamanders in forest stands with different histories of disturbance. For Ecol Manag 20:1–9

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: Version 2.2. http://pritch.bsd.uchicago.edu/structure.html. Accessed 10 July 2008

  • Pyke AS, Prest VK (1987) Late Wisconsinan and Holocene retreat of the Laurentide ice sheet. Geological Survey of Canada, “A” Series Map. 1702A

  • R development core team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in land cover: north American croplands from 1850 to 1992. Glob Ecol Biogeogr 8:381–396

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rowe G, Beebee TJC (2004) Reconciling genetic and demographic estimators of effective population size in the anuran amphibian Bufo calamita. Conserv Genet 5:287–298

    Article  CAS  Google Scholar 

  • Schmidt TL, Hansen MH, Solomakos JA (2000) Indiana’s forests in 1998. Resources Bulletin NC-196, Forest Service—USDA, St. Paul, p 147

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17:1219–1228

    Article  Google Scholar 

  • Smith WB, Golitz MF (1988) Indiana forest statistics, 1986. In: Resource Bulletin, NC-108, Forest Service—USDA, St. Paul, p 146

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conserv Gen 7:605–611

    Article  Google Scholar 

  • Spetich MA, Parker GR, Gustafson EJ (1997) Spatial and temporal relationships of old-growth and secondary forests in Indiana, USA. Nat Areas J 17:118–130

    Google Scholar 

  • Storz JF, Beaumont MA, Alberts SC (2002) Genetic evidence for long-term population decline in a savanah-dwelling primate: inferences from a hierarchical Bayesian model. Mol Biol Evol 19:1981–1990

    CAS  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodriques ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Tanner MA (1993) Tools for statistical inference. Springer, New York

    Google Scholar 

  • Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

  • Zamudio KR, Savage WK (2003) Historical isolation, range expansion, and secondary contact of two highly divergent mitochondrial lineages in spotted salamanders (Ambystoma maculatum). Evolution 57:1631–1652

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the ACRES Land Trust and the private landowners that provided permission to sample on their properties. Joe Draper of the Nature Conservancy of Indiana was instrumental in assisting with the selection of localities. D. Deegan, P. Dawes, J. Gibson, C. Chesney, U. Chesney, and R. Cruz assisted with the fieldwork. A. Curfman, C. Hite, and C. Paulson helped with the genotyping. Two anonymous reviewers greatly improved the manuscript. The study was funded by the Nature Conservancy of Indiana and the handling of salamanders was approved by the Purdue Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, M.A., Morris, D.A. & Gibson, S.E. The influence of historical landscape change on genetic variation and population structure of a terrestrial salamander (Plethodon cinereus). Conserv Genet 10, 1647 (2009). https://doi.org/10.1007/s10592-008-9741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10592-008-9741-8

Keywords

Navigation