Skip to main content
Log in

Effects of population density on male and female reproductive success in the wind-pollinated, wind-dispersed tree species Betula maximowicziana

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The effects of population density on male and female reproductive success of Betula maximowicziana were evaluated in two mixed and two post-fire stands, with various population densities, ranging from 1.9 to 300.0 trees per ha, in central Hokkaido, Japan. First, we investigated ecological determinants of reproductive success (seed set and germination) of both seeds collected from the trees (tree seeds) and dispersed seeds collected from seed traps (dispersed seeds). We then evaluated the effects of population density on seed set and germination of tree seeds and dispersed seeds using a generalized linear mixed model (GLMM). Subsequently, we genotyped 950 seeds collected from mother trees and 940 seeds trapped after dispersal derived from tree seeds and dispersed seeds, respectively, using eleven microsatellite loci. Using the acquired data, we then evaluated the outcrossing rate and effective number of pollen donors (N ep) of the tree seeds, and the genetic structure of both pollen pools and dispersed seed populations. The seed set and germination rate of dispersed seeds was significantly lower both in the lowest-density stand and in the highest-density stand. The GLMM revealed that seed set and germination rates of dispersed seeds may be maximal at approximately 120 trees per hectare (optimal density). Outcrossing rates were consistently high (t m = 0.995), regardless of the population density. In contrast, N ep was lower in the lowest-density stands. Significant genetic structure of the dispersed seed population was found in two low-density stands, probably due to the limitation of overlapping seed shadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105. doi:10.1126/science.281.5373.103

    Article  CAS  PubMed  Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ et al (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990

    PubMed  Google Scholar 

  • Campbell DR, Halama KJ (1993) Resource and pollen limitations to lifetime seed production in a natural plant population. Ecology 74:1043–1051. doi:10.2307/1940474

    Article  Google Scholar 

  • Chung MY, Nason J, Chung MG et al (2002) Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). Am J Bot 89:1229–1236. doi:10.3732/ajb.89.8.1229

    Article  Google Scholar 

  • Doligez A, Joly HI (1997) Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79:72–82. doi:10.1038/hdy.1997.124

    Article  Google Scholar 

  • Dyer RJ, Sork VL (2001) Pollen pool heterogeneity in shortleaf pine, Pinus echinata Mill. Mol Ecol 10:859–866. doi:10.1046/j.1365-294X.2001.01251.x

    Article  CAS  PubMed  Google Scholar 

  • Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 17:149–157. doi:10.1046/j.1523-1739.2003.01140.x

    Article  Google Scholar 

  • Godoy JA, Jordano P (2001) Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol Ecol 10:2275–2283. doi:10.1046/j.0962-1083.2001.01342.x

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Tsuda Y, Nagafuji K et al (2004) Genetic make-up and diversity of regenerated Betula maximowicziana Regel. sapling populations in scarified patches as revealed by microsatellite analysis. Forest Ecol Manage 203:273–282

    Article  Google Scholar 

  • Goto S, Shimatani K, Yoshimaru H et al (2006) Fat-tailed gene flow in the dioecious canopy tree species Fraxinus mandshurica var japonica revealed by microsatellites. Mol Ecol 15:2985–2996

    Article  CAS  PubMed  Google Scholar 

  • Hagman M (1975) Incompatibility in forest trees. Proc R Soc Lond B Biol Sci 188:313–326. doi:10.1098/rspb.1975.0022

    Article  Google Scholar 

  • Haig D, Westoby M (1988) On limits to seed production. Am Nat 131:757–759. doi:10.1086/284817

    Article  Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 108:281–297

    Google Scholar 

  • Itahana N, Koono K, Nagasaka K et al (1997) Seed fertility in intra- and inter specific crossing in Betula. Trans Meet Hokkaido Br J Jap For Soc 45:25–27 (in Japanese)

    Google Scholar 

  • Kalisz S, Nason JD, Hanzawa FM et al (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55:1560–1568

    CAS  PubMed  Google Scholar 

  • Knapp EE, Goedde MA, Rice KJ (2001) Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations. Oecologia 128:48–55. doi:10.1007/s004420000623

    Article  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC et al (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497. doi:10.1146/annurev.ecolsys.36.102403.115320

    Article  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV et al (2008) The paradox of forest fragmentation genetics. Conserv Biol 22(4):878–885

    Article  PubMed  Google Scholar 

  • Lee SL (2000) Mating system parameters of Dryobalanops aromatica Gaertn. f. (Dipterocarpaceae) in three different forest types and a seed orchard. Heredity 85:338–345. doi:10.1046/j.1365-2540.2000.00761.x

    Article  PubMed  Google Scholar 

  • Lian CL, Miwa M, Hogetsu T (2001) Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by microsatellite polymorphism. Heredity 87:88–98. doi:10.1046/j.1365-2540.2001.00913.x

    Article  CAS  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J et al (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425. doi:10.2307/2445869

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273. doi:10.1038/sj.hdy.6800725

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Nakanishi A, Tomaru N, Yoshimaru H et al (2004) Patterns of pollen flow and genetic differentiation among pollen pools in Quercus salicina in a warm temperate old-growth evergreen broad-leaved forest. Silvae Genet 53:258–264

    Google Scholar 

  • Nason JD, Hamrick JL (1997) Reproductive and genetic consequences of forest fragmentation: Two case studies of neotropical canopy trees. J Hered 88:264–276

    Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP (2006a) Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97:418–426. doi:10.1038/sj.hdy.6800886

    Article  PubMed  CAS  Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP (2006b) Impacts of forest fragmentation on the reproductive success of white spruce (Picea glauca). Can J Bot 84:956–965. doi:10.1139/B06-051

    Article  Google Scholar 

  • Obayashi K, Tsumura Y, Ihara-Ujino T et al (2002) Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microsatellite DNA analysis. Int J Plant Sci 163:151–158. doi:10.1086/324549

    Article  CAS  Google Scholar 

  • Ogyu K, Tsuda Y, Sugaya T et al (2003) Identification and characterization of microsatellite loci in Betula maximowicziana Regel. Mol Ecol Notes 3:268–269. doi:10.1046/j.1471-8286.2003.00419.x

    Article  CAS  Google Scholar 

  • Peakall R, Beattie AJ (1995) Does ant dispersal of seeds in Sclerolaena Diacantha (Chenopodiaceae) generate local spatial genetic-structure. Heredity 75:351–361. doi:10.1038/hdy.1995.146

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in ExcelPopulation genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228. doi:10.1038/sj.hdy.6800029

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Alía R, Gil L (2004a) Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13:2567–2577. doi:10.1111/j.1365-294X.2004.02251.x

    Article  CAS  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Smouse PE, Gil L et al (2004b) Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For Ecol Manage 197:245–255. doi:10.1016/j.foreco.2004.05.016

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Sato T, Isagi Y, Sakio H et al (2006) Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis. Heredity 96:79–84

    CAS  PubMed  Google Scholar 

  • Schnabel A, Nason JD, Hamrick JL (1998) Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Mol Ecol 7:819–832. doi:10.1046/j.1365-294x.1998.00397.x

    Article  Google Scholar 

  • Schuster WSF, Mitton JB (2000) Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity 84:348–361. doi:10.1046/j.1365-2540.2000.00684.x

    Article  CAS  PubMed  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219. doi:10.1007/BF02861001

    Article  Google Scholar 

  • Sezen UU, Chazdon RL, Holsinger KE (2005) Genetic consequences of tropical second-growth forest regeneration. Science 307:891–891. doi:10.1126/science.1105034

    Article  CAS  Google Scholar 

  • Smouse PE, Dyer RJ, Westfall RD et al (2001) Two-generation analysis of pollen flow across a landscape I. Male gamete heterogeneity among females. Evolution 55:260–271

    CAS  PubMed  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21:821–836. doi:10.1007/s10980-005-5415-9

    Article  Google Scholar 

  • Sork VL, Davis FW, Smouse PE et al (2002) Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668. doi:10.1046/j.1365-294X.2002.01574.x

    Article  CAS  PubMed  Google Scholar 

  • Stacy EA, Hamrick JL, Nason JD et al (1996) Pollen dispersal in low-density populations of three neotropical tree species. Am Nat 148:275–298. doi:10.1086/285925

    Article  Google Scholar 

  • Tomita M, Saito H, Suyama Y (2008) Effect of local stand density on reproductive processes of the sub-boreal conifer Picea jezoensis Carr. (Pinaceae). For Ecol Manage. doi:10.1016/j.foreco.2008.06.037

  • Tsuda Y, Ide Y (2005) Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in the cool temperate zone of Japan. Mol Ecol 14:3929–3941

    Article  CAS  PubMed  Google Scholar 

  • Tsuda S, Goto S, Takahashi Y et al (2002) Vegetation of an eighty seven-year-old stand after a forest fire in mixed conifer-hardwood forest, central Hokkaido, Japan. Veg Sci 19:125–130. in Japanese

    Google Scholar 

  • Uchiyama K, Goto S, Tsuda Y et al (2006) Genetic diversity and genetic structure of adult and buried seed populations of Betula maximowicziana in mixed and post-fire stands. For Ecol Manage 237:119–126. doi:10.1016/j.foreco.2006.09.037

    Article  Google Scholar 

  • Willson MF, Burley N (1983) Mate choice in plants. Princeton University Press, Princeton New Jersey, USA

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Wu B, Lian C, Hogetsu T (2002) Development of microsatellite markers in white birch (Betula platyphylla var. japonica). Mol Ecol Notes 2:413–415. doi:10.1046/j.1471-8286.2002.00260.x

    Article  CAS  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi:10.1016/0169-5347(96)10045-8

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the contribution of Y. Takahashi and staff of the Tokyo University Forest in Hokkaido. We are also grateful to Dr. Y. Tsuda of the Forestry and Forest Products Research Institute, and Y. Saito of the Laboratory of Forest Ecosystem Studies, Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, the University of Tokyo for helpful comments. A part of this study was supported by a Grant-in-Aid for Scientific Research (No. 19380082) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Uchiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchiyama, K., Goto, S. & Ide, Y. Effects of population density on male and female reproductive success in the wind-pollinated, wind-dispersed tree species Betula maximowicziana . Conserv Genet 10, 1265–1275 (2009). https://doi.org/10.1007/s10592-008-9694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9694-y

Keywords

Navigation