Conservation Genetics

, Volume 10, Issue 1, pp 87–99 | Cite as

Identification of conservation units in the European Mergus merganser based on nuclear and mitochondrial DNA markers

  • Barbara Hefti-Gautschi
  • Monika Pfunder
  • Lukas Jenni
  • Verena Keller
  • Hans Ellegren
Research Article


The conservation status of small breeding areas of the Goosander (Mergus merganser merganser) in Central Europe is unclear. Geographic isolation of these areas suggests restricted gene flow to and from large North-European populations. On the other hand, migrating Goosanders from northern Europe join the Central European breeding population for wintering. To evaluate the conservation status of the small breeding areas we assessed the genetic structure of M. merganser populations in Europe by examining two nuclear marker systems (microsatellites and Single Nucleotide Polymorphisms, SNP) and mitochondrial (mtDNA) control region sequence variation for Goosanders in 11 sampling areas representing three of five distinct breeding areas and two subspecies (M. m. merganser and M. m. americanus). Overall population differentiation estimates including both subspecies were high, both based on mtDNA (\(\Upphi_{\rm ST}=0.899;\,P<0.0001\)) and nuclear markers (θ ST = 0.219; 95% CI 0.088–0.398, SNP and microsatellites combined). Within Europe, mtDNA revealed a strong overall (\(\Upphi_{\rm ST}=0.426;\,P<0.0001\)) and significant pairwise population differentiation between almost all comparisons. In contrast, both nuclear marker systems combined revealed only a small overall genetic differentiation (θ ST = 0.022; 95% CI 0.003–0.041). The strong genetic differentiation based on female-inherited mtDNA but not on biparentally inherited nuclear markers can be explained by sex-biased dispersal and strong female philopatry. Therefore, small breeding areas in Europe are endangered despite large male-mediated gene-flow, because when these populations decline, only males—but due to strong philopatry not females—can be efficiently supplemented by migration from the large North European populations. We therefore propose to manage the small breeding areas independently and to strengthen conservation efforts for this species in Central Europe.


Female philopatry Microsatellite mtDNA Population structure SNP 



We would like to thank Adrian Aebischer, Åke Andersson, Johannes Bang, Michel Beaud, Bjørn-Aksel Bjerke, Peter Blaser, Bruno Blum, Ronald Bryant, Bernard Büttiker, Hans Englund, Jean-Marc Fivat, Michael Grell, Alan Hanson, Martti Hario, Pierre Henrioux, Josef Hofer, Leo Hüppin, Esbjörn Johansson, Kaarel Kaisel, Jan T. Lifjeld (Zoological Museum in Oslo), Bernard Lugrin, Matti Luostarinen, Theo Marbot-Monbaron, Alfred Mischler, Adam Mohr, Juhana and Pekka Niittylä, Sven Nilsson, Bertil Österberg, Pascal Rapin, Bernard Reymond, Aevar Petersen (Icelandic Institute of Natural History in Reykjavik), Hubert J. du Plessix, Runko Pnetti, Walter Schaub, Norman Seqmour Schmucki, Marco Zenatello, and Heribert Zintl for providing samples. This work was supported by the foundation “Dr. Joachim De Giacomi” of the Swiss Academy of Sciences (SCNAT), by the Swiss Federal Office for the Environment (FOEN), and by a postdoctoral fellowship from the Swiss National Science Foundation to BHG.


  1. Avise JC (1995) Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conserv Biol 9:686–690CrossRefGoogle Scholar
  2. Batley J, Hayes PK (2003) Development of high throughput single nucleotide polymorphism genotyping for the analysis of Nodularia (Cyanobacteria) population genetics. J Phycol 39:248–252CrossRefGoogle Scholar
  3. Belovsky GE, Mellison C, Larson C, VanZandt PA (1999) Experimental studies of extinction dynamics. Science 286:1175–1177PubMedCrossRefGoogle Scholar
  4. Breininger DR, Brugman MA, Stith BM (1999) Influence of habitat quality, catastrophes, and population size on extinction risk of the Florida scrub-jay. Wildl Soc Bull 27:810–822Google Scholar
  5. Brown KM, Baltazar GA, Hamilton MB (2005) Reconciling nuclear and mitochondrial marker estimates of population structure: breeding population structure of Chesapeake Bay striped bass (Marone saxatilis). Heredity 94:606–615PubMedCrossRefGoogle Scholar
  6. Chappell DE, Van den Bussche RA, Krizan J, Patterson B (2004) Contrasting levels of genetic differentiation among populations of wolverines (Gulo gulo) from northern Canada revealed by nuclear and mitochondrial loci. Conserv Genet 5:759–767CrossRefGoogle Scholar
  7. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  8. Crochet PA (2000) Genetic structure of avian populations-allozymes revisited. Mol Ecol 9:1463–1469PubMedCrossRefGoogle Scholar
  9. Edwards SV (1997) Relevance of microevolutionary processes to higher level molecular systematics. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, San DiegoGoogle Scholar
  10. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  11. Friesen VL, Montevecchi WA, Gaston AJ et al (1996) Molecular evidence for kin groups on the absence of large-scale genetic differentiation in a migratory bird. Evolution 50:924–930CrossRefGoogle Scholar
  12. Fünfstück H-J, von Lossow G, Schöpf H (2003) Rote Liste gefährdeter Brutvögel (Aves) Bayerns. In: Rote Liste gefährdeter Tiere Bayerns. Schriftenreihe 166. Bayerisches Landesamt für Umweltschutz, AugsburgGoogle Scholar
  13. Gautschi B, Koller B (2005) Polymorphic microsatellites for the Goosander (Mergus merganser). Mol Ecol Notes 5:133–134CrossRefGoogle Scholar
  14. Gautschi B, Müller JP, Schmid B, Shykoff J (2003) Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity 91:9–16PubMedCrossRefGoogle Scholar
  15. Gay L, Defos du Rau P, Mondain-Monval J-Y, Crochet PA (2004) Phylogeography of a game species: the red-crested pochard (Netta rufina) and consequences for its management. Mol Ecol 13:1035–1045PubMedCrossRefGoogle Scholar
  16. Goudet J (1999) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9). Available from Updated from Goudet (1995)
  17. Hagemeijer EJM, Blair MJ (1997) The EBBC Atlas of European breeding birds: their distribution and abundance. T. & A. D. Poyser, LondonGoogle Scholar
  18. Hey J, Harris E (1999) Population bottlenecks and patterns of human polymorphism. Mol Biol Evol 16:1423–1426PubMedGoogle Scholar
  19. Hofer J, Marti C (1988) Beringungsdaten zur Überwinterung des Gänsesägers Mergus merganser am Sempachersee: Herkunft, Zugverhalten und Gewicht. Der Ornithologische Beobachter 85:97–122Google Scholar
  20. Jones KL, Krapu GL, Brandt DA, Ashley MV (2005) Population structure in the migratory sandhill cranes and the role of Pleistocene glaciations. Mol Ecol 14:2645–2657PubMedCrossRefGoogle Scholar
  21. Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347PubMedCrossRefGoogle Scholar
  22. Kalbe L (1990) Der Gänsesäger. Die Neue Brehm-Bücherei 604. Ziemsen, Wittenberg-LutherstadtGoogle Scholar
  23. Keller V, Gremaud J (2003) Der Brutbestand des Gänsesägers Mergus merganser in der Schweiz 1998. Der Ornithologische Beobachter 100:227–246Google Scholar
  24. Keller V, Zbinden N, Schmid H, Volet B (2001) Rote Liste der gefährdeten Brutvogelarten der Schweiz. BUWAL-Reihe Vollzug Umwelt Bundesamt für Umwelt, Wald und Landschaft, und Schweizerische Vogelwarte, Bern und SempachGoogle Scholar
  25. Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200Google Scholar
  26. Matthies D, Bräuer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488CrossRefGoogle Scholar
  27. Newmark WD (1995) Extinction of mammal populations in western North-American National-Parks. Conserv Biol 9:512–526CrossRefGoogle Scholar
  28. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  29. Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  30. Rohwer FC, Anderson MG (1988) Female-biased philopatry, monogamy, and the timing of pair formation in migratory waterfowl. In: Johnson RF (ed) Current ornithology. Plenum Press, New YorkGoogle Scholar
  31. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, Cold Spring Harbour, NYGoogle Scholar
  33. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN, Version 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory. University of Geneva, Geneva, SwitzerlandGoogle Scholar
  34. Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publications, 41, Wetlands InternationalGoogle Scholar
  35. Seddon JM, Parker HG, Ostrander EA, Ellegren H (2005) SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Mol Ecol 14:503–511PubMedCrossRefGoogle Scholar
  36. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134CrossRefGoogle Scholar
  37. Shaffer M (1987) Minimum viable populations: coping with uncertainty. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, CambridgeGoogle Scholar
  38. Sokolov BP (1990) Primer extension technique for the detection of single nucleotides in genomic DNA. Nucleic Acids Res 18:3671PubMedCrossRefGoogle Scholar
  39. Sorenson MD, Ast JC, Dimcheff DE et al (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114PubMedCrossRefGoogle Scholar
  40. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327PubMedCrossRefGoogle Scholar
  41. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  42. van Oppen MJH, Rico C, Turner GF, Hewitt GM (2000) Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in Lake Malawi Cichlids. Mol Biol Evol 17:489–498PubMedGoogle Scholar
  43. Viard F, Franck P, Dubois M-P, Estoup A, Jarne P (1998) Variation of microsatellite size homoplasy across electromorphs, loci and populations in three invertebrate species. J Mol Evol 47:42–51PubMedCrossRefGoogle Scholar
  44. Von Lossow G, Fünfstück H-J (2003) Bestand der Brutvögel Bayerns 1999. Ornithologischer Anzeiger 42:57–70Google Scholar
  45. Weir BS, Cockerham CC (1984) Estimation of F-statistics for the analysis of population structure. Evolution 38:1358–8203CrossRefGoogle Scholar
  46. Wernham CV, Toms MP, Marchant JH et al (2002) The migration atlas: movements of the birds of Britain and Ireland. T. & A. D. Poyser, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Barbara Hefti-Gautschi
    • 1
    • 2
  • Monika Pfunder
    • 1
  • Lukas Jenni
    • 3
  • Verena Keller
    • 3
  • Hans Ellegren
    • 2
  1. 1.Ecogenics GmbHZurich-SchlierenSwitzerland
  2. 2.Department of Evolutionary Biology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  3. 3.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations