Skip to main content

Advertisement

Log in

Low levels of quantitative and molecular genetic differentiation among natural populations of Medicago ciliaris Kroch. (Fabaceae) of different Tunisian eco-geographical origin

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelkefi A, Boussaid M, Biborchi A, Haddioui A, Salhi-Hannachi A, Marrakchi M (1996) Genetic diversity inventory and evaluation of spontaneous species belonging to Medicago L. genus in Tunisia. Cah Options Méditerr 18:143–149

    Google Scholar 

  • Badri M, Zribi K, Soula S, Lazrek F, Badri Y, Khaldi M, Yousfi N, Djebali N, Huguet T, Aouani ME (2004a) Specificities and usefulness of medics-sinorhizobia symbioses in Tunisian areas: preliminary assessment of the statement. In: Abstracts of the 5th Tunisian-Japanese on Culture, Science and Technology, Sfax, Tunisia

  • Badri M, Huguet T, Aouani ME (2004b) Comparison of quantitative genetic traits among natural populations of the model legume Medicago truncatula in Tunisian arid areas. In: Abstracts of arid regions of aridoculture et cultures oasiennes, Djerba, Tunisia

  • Badri M, Ilahi H, Huguet T, Aouani ME (2007) Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 89:107–122

    Article  PubMed  CAS  Google Scholar 

  • Barker DG, Bianchi S, London F, Datee Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  • Belkhir K (2001) Genetix software, version 4.01. Laboratoire Génome, Populations, Interactions, CNRS UPR 9060, Montpellier, France (genetix@crit.univ-montp2.fr)

  • Bena G, Prosperi JM, Lejeune B, Olivieri I (1998) Evolution of annual species of the genus Mediacgo: a molecular phylogenetic approach. J Mol Evol 9(3):552–559

    Article  CAS  Google Scholar 

  • Berlow EL, D’Antonio CM, Reynolds SA (2002) Shrub expansion in montane meadows: the interaction of local-scale disturbance and site aridity. Ecol Appl 12:1103–1118

    Article  Google Scholar 

  • Bonnin I, Prosperi JM, Olivieri I (1996) Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminoseae): a comparative analysis of population structure. Genetics 143:1795–1805

    PubMed  CAS  Google Scholar 

  • Bonnin I, Prosperi JM, Olivieri I (1997) Comparison of quantitative genetic parameters between two natural populations of a selfing plant species, Medicago truncatula Gaertn. Theor Appl Genet 94:641–651

    Article  Google Scholar 

  • Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans Roy Soc B 358(1434):1051–1570

    Article  CAS  Google Scholar 

  • Clausen JD, Keck D, Hiesey WM (1940) Experimental studies on the nature of species. In: Effect of varied environments on western North American plants. Carnegie Institute of Washington, Washington, DC

  • Crnokrak P, Roff DA (1995) Dominance variance-associations with selection and fitness. Heredity 75:530–540

    Article  Google Scholar 

  • Cruse-Sanders JM, Hamrick JL (2004) Spatial and genetic structure within populations of wild American ginseng (Panax quinquefolius L., Araliaceae). J Hered 95(4):309–321

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, MacKay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, London

    Google Scholar 

  • Gherardi M, Mangin B, Bonnet D, Goffinet B, Huguet T (1998) A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers. Theor Appl Genet 96:406–412

    Article  CAS  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  PubMed  Google Scholar 

  • Gomez-Mestre I, Tejedo M (2004) Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita. Evolution 58(10):2343–2352

    PubMed  CAS  Google Scholar 

  • Goudet J (1995) FSTAT, version 1.2. A computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Huang QY, Beharav A, Youchun UC, Kirzhner V, Nevo E (2002) Mosaic microecological differential stress causes adaptive microsatellite divergence in wild barley, Hordeum spontaneum, at Neve Yaar, Israel. Genome 45:1216–1229

    Article  PubMed  CAS  Google Scholar 

  • Innan H, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of wild plant Arabidopsis thaliana. Genetics 146:1441–1452

    PubMed  CAS  Google Scholar 

  • Isabel N, Beaulieu J, Thériault P, Bousquet J (1999) Direct evidence for biased gene diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483

    Article  Google Scholar 

  • Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WTB, Forster BP (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48:511–527

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo-Correa JP, Beaulieu J, Bousquet J (2001) Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 10:2729–2740

    Article  PubMed  CAS  Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9

    Article  PubMed  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative variation. Trends Genet 13:74–78

    Article  PubMed  CAS  Google Scholar 

  • Kremer A, Zanetto A, Ducousso A (1997) Multilocus and multitrait measures of differentiation for gene markers and phenotypic traits. Genetics 145:1229–1241

    PubMed  CAS  Google Scholar 

  • Lesins KA, Lesins I (1979) Genus Medicago (Leguminosae). A Taxogenetic Study. The Hague, The Netherlands

    Google Scholar 

  • Li Y, Röder MS, Fahima T, Beiles A, Korol A, Nevo E (2000) Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theor Appl Genet 100:985–999

    Article  Google Scholar 

  • Li YC, Krugman T, Fahima T, Beiles A, Korol AB, Nevo E (2001) Spatiotemporal allozyme divergence caused by aridity stress in a natural population of wild wheat, Triticum dicoccoides, at the Ammiad microsite, Israel. Theor Appl Genet 102:853–864

    Article  CAS  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lopez-Fanjul C, Fernandez A, Toro MA (2003) The effect of neutral nonadditive gene action on the quantitative index of population divergence. Genetics 164:1627–1633

    PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:1055–1067

    Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Mitton JB, Duran KL (2004) Genetic variation in pinon pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merilä J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 13:2865–2869

    Article  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software version 5.0.148 (http://darwin.cirad.fr/darwin)

  • Podolsky RH, Holtsford TP (1995) Population structure of morphological traits in Clarkia dudleyana. I. Comparison of F ST between allozymes and morphological traits. Genetics 140:733–744

    PubMed  CAS  Google Scholar 

  • Pottier-Alapetite G (1979) Flore de la Tunisie, Angiospermes, dicotylédones, Apétales-Dialypétales. Publications scientifiques tunisiennes, Tunis

  • Pressoir G, Berthaud J (2004) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101

    Article  PubMed  CAS  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    PubMed  CAS  Google Scholar 

  • Rogers SO, Bendish AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schiperoot RA (eds) Plant molecular biology manual. Kluwer, Academic publishers, Dordrecht Boston London

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Saal B, Plieske J, Hu J, Quiros CF, Struss D (2001) Microsatellite markers for genome analysis in Brassica. II. Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea L. Theor Appl Genet 102:695–699

    Article  CAS  Google Scholar 

  • SAS Institute (1998) SAS/STAT User’ Guide, version 70. SAS Institute Inc, Cary NC

    Google Scholar 

  • Shrestha MK, Golan-Goldhirsh A, Ward D (2002) Population genetic structure and the conservation of isolated populations of Acacia raddiana in the Negev Desert. Biol Conserv 108:119–127

    Article  Google Scholar 

  • Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  CAS  Google Scholar 

  • Stenoien HK, Fenster CB, Tonteri A, Savolainen O (2005) Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Mol Ecol 14:137–148

    Article  PubMed  CAS  Google Scholar 

  • Turesson G (1925) The plant species in relation to habitat and climate. Hereditas 6:147–236

    Article  Google Scholar 

  • Turpeinen T, Tenhola T, Manninen O, Nevo E, Nissilä E (2001) Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol 10:1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Van Rosum F, Bonnin I, Fénart S, Pauwels M, Petit D, Saumitou-Laprade P (2004) Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species. Mol Ecol 13:2959–2967

    Article  CAS  Google Scholar 

  • Volis S, Yakubov B, Shulgina I, Ward D, Mendlinger S (2005) Distinguishing adaptive from nonadaptive genetic differentiation: comparison of Q ST and F ST at two spatial scales. Heredity 95:466–475

    Article  PubMed  CAS  Google Scholar 

  • Volis S, Yakubov B, Shulgina I, Ward D, Zur V, Mendlinger S (2001) Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch. Biol J Linn Soc 74:289–303

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Zhan J, Linde CC, Jürgens T, Merz U, Steinebrunner F, Mc Donald BA (2005) Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol Ecol 14:2683–2693

    Article  PubMed  CAS  Google Scholar 

  • Zribi K, Badri Y, Saidi S, van Berkum P, Aouani ME (2007) Medicago ciliaris growing in Tunisian soils is preferentially nodulated by Sinorhizobium medicae. Aust J Soil Res 45:473–477

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Soumaya Arraouadi for molecular technical assistance and two anonymous referees for helpful comments on the manuscript. This work was funded in part by Tunisian-French collaborative programs (CMCU 00F0909 and PICS 712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounawer Badri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badri, M., Zitoun, A., Soula, S. et al. Low levels of quantitative and molecular genetic differentiation among natural populations of Medicago ciliaris Kroch. (Fabaceae) of different Tunisian eco-geographical origin. Conserv Genet 9, 1509–1520 (2008). https://doi.org/10.1007/s10592-007-9483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9483-z

Keywords

Navigation