Skip to main content

Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara)

Abstract

Captive breeding is an integral part of many species recovery plans. Knowledge of the genetic mating system is essential for effective management of captive stocks and release groups, and can help to predict patterns of genetic diversity in reintroduced populations. Here we investigate the poorly understood mating system of a threatened, ancient reptile (tuatara) on Little Barrier Island, New Zealand and discuss its impact on the genetic diversity. This biologically significant population was thought to be extinct, due to introduced predators, until 8 adults (4 males, 4 females) were rediscovered in 1991/92. We genotyped these adults and their 121 captively-bred offspring, hatched between 1994 to 2005, at five microsatellite loci. Multiple paternity was found in 18.8% of clutches. Male variance in reproductive success was high with one male dominating mating (77.5% of offspring sired) and one male completely restricted from mating. Little Barrier Island tuatara, although clearly having undergone a demographic bottleneck, are retaining relatively high levels of remnant genetic diversity which may be complemented by the presence of multiple paternity. High variance in reproductive success has decreased the effective size of this population to approximately 4 individuals. Manipulation to equalize founder representation was not successful, and the mating system has thus had a large impact on the genetic diversity of this recovering population. Although population growth has been successful, in the absence of migrants this population is likely at risk of future inbreeding and genetic bottleneck.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aitken N, Hay JM, Sarre SD, Lambert DM, Daugherty CH (2001) Microsatellite DNA markers for tuatara (Sphenodon spp.). Conserv Genet 2:183–185

    Article  CAS  Google Scholar 

  2. Allendorf FW (2001) Genetics and the viability of insular populations of reptiles. NZ J Zool 28:361

    Google Scholar 

  3. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden

    Google Scholar 

  4. Anthony LL, Blumstein DT (2000) Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne. Biol Conserv 95(3):303–315

    Article  Google Scholar 

  5. Avise JC, Jones AG, Walker D, DeWoody JA, Collaborators (2002) Genetic mating systems and reproductive natural histories of fishes: Lessons for ecology and evolution. Ann Rev Genet 36:19–45

    PubMed  Article  CAS  Google Scholar 

  6. Benton MJ (2000) Vertebrate palaeontology. Blackwell Science, London

  7. Bretman A, Tregenza T (2005) Measuring polyandry in wild populations: a case study using promiscuous crickets. Mol Ecol 14(7):2169–2179

    PubMed  Article  CAS  Google Scholar 

  8. Bull CM (2000) Monogamy in lizards. Behav Proc 51(1–3):7–20

    Article  Google Scholar 

  9. Calsbeek R, Sinervo B (2004) Within-clutch variation in offspring sex determined by differences in sire body size: cryptic mate choice in the wild. J Evol Biol 17(2):464–470

    PubMed  Article  Google Scholar 

  10. Carmichael CK, Gillingham JC, Keall SN (1989) Feeding ecology of the tuatara (Sphenodon punctatus) on Stephens Island based on niche diversification. NZ J Zool 16:269 (abstract)

    Google Scholar 

  11. Chapple DG, Keogh JS (2005) Complex mating system and dispersal patterns in a social lizard, Egernia whitii. Mol Ecol 14(4):1215–1227

    PubMed  Article  CAS  Google Scholar 

  12. Clout MN, Craig JL (1995) The conservation of critically endangered flightless birds in New Zealand. Ibis 1 (supplement 1)

  13. Cree A (1994) Low annual reproductive output in female reptiles from New Zealand. NZ J Zool 21(4):351–372

    Google Scholar 

  14. Cree A, Cockrem JF, Brown MA, Watson PR, Guillette LJ, Newman DG, Chambers GK (1991) Laparoscopy, radiography, and blood analyses as techniques for identifying the reproductive condition of female tuatara. Herpetologica 47(2):238–249

    Google Scholar 

  15. Cree A, Cockrem JF, Guillette Jr. LJ (1992) Reproductive cycles of male and female tuatara (Sphenodon punctatus) on Stephens Island, New Zealand. J Zool 226:199–217

    Article  Google Scholar 

  16. Cree A, Daugherty CH, Hay JM (1995) Reproduction of a rare New Zealand reptile, the tuatara Sphenodon punctatus, on rat-free and rat-inhabited islands. Conserv Biol 9(2):373–383

    Article  Google Scholar 

  17. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93(5):504–509

    PubMed  Article  CAS  Google Scholar 

  18. Daugherty CH, Cree A, Hay JM, Thompson MB (1990) Neglected taxonomy and continuing extinctions of tuatara (Sphenodon). Nature 347(6289):177–179

    Article  Google Scholar 

  19. Davis LM, Glenn TC, Elsey RM, Dessauer HC, Sawyer RH (2001) Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol Ecol 10(4):1011–1024

    PubMed  Article  CAS  Google Scholar 

  20. Ebenhard T (1995) Conservation breeding as a tool for saving animal species from extinction. Trends Ecol Evol 10(11):438–443

    Article  Google Scholar 

  21. Eberle M, Kappeler PM (2004) Sex in the dark: determinants and consequences of mixed male mating tactics in Microcebus murinus, a small solitary nocturnal primate. Behav Ecol Sociobiol 57(1):77–90

    Article  Google Scholar 

  22. Fitze PS, Le Galliard JF, Federici P, Richard M, Clobert J (2005) Conflict over multiple-partner mating between males and females of the polygynandrous common lizards. Evolution 59(11):2451–2459

    PubMed  Google Scholar 

  23. Fiumera AC, Porter BA, Grossman GD, Avise JC (2002) Intensive genetic assessment of the mating system and reproductive success in a semi-closed population of the mottled sculpin, Cottus bairdi. Mol Ecol 11(11):2367–2377

    PubMed  Article  CAS  Google Scholar 

  24. Gibbs HL, Weatherhead PJ, Boag PT, White BN, Tabak LM, Hoysak DJ (1990) Realized reproductive success of polygynous Red-Winged Blackbirds revealed by DNA markers. Science 250(4986):1394–1397

    PubMed  Article  Google Scholar 

  25. Gillingham JC, Carmichael C, Miller T (1995) Social behavior of the tuatara, Sphenodon punctatus. Herpetol Monogr 9:5–16

    Article  Google Scholar 

  26. Girardet SAB, Veitch CR, Craig JL (2001) Bird and rat numbers on Little Barrier Island, New Zealand, over the period of cat eradication 1976–80. NZ J Zool 28(1):13–29

    Google Scholar 

  27. Gopurenko D, Williams RN, McCormick CR, DeWoody JA (2006) Insights into the mating habits of the tiger salamander (Ambystoma tigrinum tigrinum) as revealed by genetic parentage analyses. Mol Ecol 15:1917–1928

    PubMed  Article  CAS  Google Scholar 

  28. Goyache F, Gutierrez JP, Fernandez I, Gomez E, Alvarez I, Diez J, Royo LJ (2003) Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. J Anim Breed Genet 120(2):95–105

    Article  Google Scholar 

  29. Gutierrez JP, Altarriba J, Diaz C, Quintanilla R, Canon J, Piedrafita J (2003) Pedigree analysis of eight Spanish beef cattle breeds. Genet Sel Evol 35(1):43–63

    PubMed  Article  Google Scholar 

  30. Gutierrez JP, Goyache F (2005) A note on ENDOG: a computer program for analysing pedigree information. J Anim Breed Genet 122(3):172–176

    PubMed  Article  CAS  Google Scholar 

  31. Hay JM, Daugherty CH, Cree A, Maxson LR (2003) Low genetic divergence obscures phylogeny among populations of Sphenodon, remnant of an ancient reptile lineage. Mol Phylogenet Evol 29(1):1–19

    PubMed  Article  Google Scholar 

  32. Hay JM, Lambert DM (2007) Microsatellite DNA loci identify individuals and provide no evidence for multiple paternity in wild tuatara (Sphenodon: Reptilia). Conserv Genet (in press). doi:10.1007/s10592-007-9445-5

    Google Scholar 

  33. Hoelzel AR, Le Boeuf BJ, Reiter J, Campagna C (1999) Alpha-male paternity in elephant seals. Behav Ecol Sociobiol 46(5):298–306

    Article  Google Scholar 

  34. Howard RD, Moorman RS, Whiteman HH (1997) Differential effects of mate competition and mate choice on eastern tiger salamanders. Anim Behav 53:1345–1356

    PubMed  Article  Google Scholar 

  35. Jamieson IG, Quinn JS, Rose PA, White BN (1994) Shared paternity among non-relatives is a result of an egalitarian mating system in a communally breeding bird, the Pukeko. Proc R Soc B 257(1350):271–277

    Article  Google Scholar 

  36. Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    PubMed  Article  CAS  Google Scholar 

  37. Kimura M, Crow JF (1963) Measurement of effective population number. Evolution 17 (3):279–288

    Google Scholar 

  38. Lee PLM, Hays GC (2004) Polyandry in a marine turtle: females make the best of a bad job. Proc Nat Acad Sci USA 101(17):6530–6535

    PubMed  Article  CAS  Google Scholar 

  39. Lenz TL, Jacob A, Wedekind C (2007) Manipulating sex ratio to increase population growth: the example of the Lesser Kestrel. Anim Conserv 10:236–244

    Article  Google Scholar 

  40. Levitan DR, Petersen C (1995) Sperm limitation in the sea. Trends Ecol Evol 10(6):228–231

    Article  Google Scholar 

  41. Luikart G, Cornuet JM (1999) Estimating the effective number of breeders from heterozygote excess in progeny. Genetics 151(3):1211–1216

    PubMed  CAS  Google Scholar 

  42. MacAvoy ES, McGibbon LM, Sainsbury JP, Lawrence H, Wilson CA, Daugherty CH, Chambers GK (2007) Genetic variation in island populations of tuatara (Sphenodon spp) inferred from microsatellite markers. Conserv Genet 8(2):305–318

    Article  CAS  Google Scholar 

  43. Madsen T, Shine R, Loman J, Hakansson T (1992) Why do female adders copulate so frequently. Nature 355(6359):440–441

    Article  Google Scholar 

  44. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655

    PubMed  Article  CAS  Google Scholar 

  45. Miller HC, Andrews-Cookson M, Daugherty CH (2007) Two patterns of variation among MHC class I loci in tuatara (Sphenodon punctatus). J Hered (in press). doi:10.1093/jhered/esm095

    PubMed  Google Scholar 

  46. Morrison SF, Keogh JS, Scott IAW (2002) Molecular determination of paternity in a natural population of the multiply mating polygynous lizard Eulamprus heatwolei. Mol Ecol 11(3):535–545

    PubMed  Article  CAS  Google Scholar 

  47. Nelson NJ, Cree A, Thompson MB, Keall SN, Daugherty CH (2004) Temperature-dependent sex determination in tuatara. In: Valenzuela N, Lance V (eds) Temperature dependent sex determination in vertebrates, Smithsonian Books, Washington, D.C

  48. Nelson NJ, Keall SN, Brown D, Daugherty CH (2002) Establishing a new wild population of tuatara (Sphenodon guntheri). Conserv Biol 16(4):887–894

    Article  Google Scholar 

  49. Olsson M, Shine R (1997) Advantages of multiple matings to females: A test of the infertility hypothesis using lizards. Evolution 51(5):1684–1688

    Article  Google Scholar 

  50. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  51. Pearse DE, Avise JC (2001) Turtle mating systems: behavior, sperm storage, and genetic paternity. J Hered 92(2):206–211

    PubMed  Article  CAS  Google Scholar 

  52. Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153(2):145–164

    Article  Google Scholar 

  53. Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote excess in progeny. Genetics 144(1):383–387

    PubMed  CAS  Google Scholar 

  54. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43(2):258–275

    Article  Google Scholar 

  55. Ralls K, Ballou J (1986) Captive breeding programs for populations with a small number of founders. Trends Ecol Evol 1(1):19–22

    Article  Google Scholar 

  56. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  57. Reischek A (1886) Observations on Sphenodon punctatum, fringe-back lizard (tuatara). Trans Proc NZ Inst 18:108–110

    Google Scholar 

  58. Reynolds JD (1996) Animal breeding systems. Trends Ecol Evol 11(2):68–72

    Article  Google Scholar 

  59. Roberts SC, Gosling LM (2003) Genetic similarity and quality interact in mate choice decisions by female mice. Nature Genet 35(1):103–106

    PubMed  Article  CAS  Google Scholar 

  60. Saint Girons H (1983) The tuatara: ecological features and some hypotheses concerning its evolution. Bull Soc Zool Fr 108:631–634

    Google Scholar 

  61. Salvador A, Veiga JP (2001) Male traits and pairing success in the lizard Psammodromus algirus. Herpetologica 57(1):77–86

    Google Scholar 

  62. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold spring harbor laboratory press, Cold Springs Harbor

    Google Scholar 

  63. Sarrazin F, Barbault R (1996) Reintroduction: challenges and lessons for basic ecology. Trends Ecol Evol 11(11):474–478

    Article  Google Scholar 

  64. Snyder NFR, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD, Miller B (1996) Limitations of captive breeding in endangered species recovery. Conserv Biol 10(2):338–348

    Article  Google Scholar 

  65. Sugg DW, Chesser RK (1994) Effective population sizes with multiple paternity. Genetics 137(4):1147–1155

    PubMed  CAS  Google Scholar 

  66. Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121(2):379–391

    PubMed  CAS  Google Scholar 

  67. Whitaker AH (1993) Research on the tuatara (Sphenodon punctatus) of Little Barrier Island, 6–20 October 1992. Page 52. Unpublished report, Auckland Conservancy, New Zealand department of conservation, Auckland

  68. Whitaker AH, Daugherty CH (1991) Research on the tuatara (Sphenodon punctatus) of Little Barrier Island, 5–12 February 1991. Page 54. Unpublished report, Auckland Conservancy, New Zealand Department of Conservation, Auckland

  69. Xu QH, Fang SG, Wang ZP, Wang ZW (2005) Microsatellite analysis of genetic diversity in the Chinese alligator (Alligator sinensis) Changxing captive population. Conserv Genet 6(6):941–951

    Article  CAS  Google Scholar 

  70. Zamudio KR, Sinervo E (2000) Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies. Proc Nat Acad Sci USA 97(26):14427–14432

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the New Zealand Department of Conservation particularly Pete Barrow, Chris Smuts-Kennedy, Will Scarlet, Irene Petrove, Rosalie Stamp, Richard Griffiths and Pete Gaze for assistance and permission to conduct research (DoC permit number AK-18518-RES, and VUW animal ethics approval #2003R16). We also thank Hilary Miller, Kristina Ramstad, Jennie Hay, Barbara Blanchard, Fred Allendorf, Ngati Wai iwi and the VUW herpetological hatchet group for comments on the manuscript. Funding for this research was provided by the New Zealand Department of Conservation, the Allan Wilson Centre for Molecular Ecology and Evolution, the Zoological Society of San Diego, and Education New Zealand (doctoral scholarship to JAM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Moore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moore, J.A., Nelson, N.J., Keall, S.N. et al. Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara). Conserv Genet 9, 1243–1251 (2008). https://doi.org/10.1007/s10592-007-9452-6

Download citation

Keywords

  • Sphenodon
  • Mating system
  • Effective population size
  • Polygyny
  • New Zealand