A rangewide population genetic study of trumpeter swans

Abstract

For management purposes, the range of naturally occurring trumpeter swans (Cygnus buccinator) has been divided into two populations, the Pacific Coast Population (PP) and the Rocky Mountain Population (RMP). Little is known about the distribution of genetic variation across the species’ range despite increasing pressure to make difficult management decisions regarding the two populations and flocks within them. To address this issue, we used rapidly evolving genetic markers (mitochondrial DNA sequence and 17 nuclear microsatellite loci) to elucidate the underlying genetic structure of the species. Data from both markers revealed a significant difference between the PP and RMP with the Yukon Territory as a likely area of overlap. Additionally, we found that the two populations have somewhat similar levels of genetic diversity (PP is slightly higher) suggesting that the PP underwent a population bottleneck similar to a well-documented one in the RMP. Both genetic structure and diversity results reveal that the Tri-State flock, a suspected unique, non-migratory flock, is not genetically different from the Canadian flock of the RMP and need not be treated as a unique population from a genetic standpoint. Finally, trumpeter swans appear to have much lower mitochondrial DNA variability than other waterfowl studied thus far which may suggest a previous, species-wide bottleneck.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alison RM (1975) Some previously unpublished historical records of trumpeter swans in Ontario. Can Field Nat 89:311–313

    Google Scholar 

  2. Banko WE (1960) The trumpeter swan: its history, habits, and populations in the United States. North American Fauna. No. 63., U. S. Fish and Wildlife Service, Washington, D. C., USA

    Google Scholar 

  3. Barrett VA, Vyse ER (1982) Comparative genetics of three trumpeter swan populations. Auk 99:103–108

    Google Scholar 

  4. Bellrose FC (1976) Ducks, geese and swans of North America. Stackpole Books, Harrisburg, USA

    Google Scholar 

  5. Bowcock AM, Ruizlinares A, Tomfohrde J et al (1994) High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    PubMed  Article  CAS  Google Scholar 

  6. Carew PJ, Adcock GJ, Mulder RA (2003) Microsatellite loci for paternity assessment in the black swan (Cygnus atratus: Aves). Mol Ecol Notes 3:1–3

    Article  CAS  Google Scholar 

  7. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Human Genetics 19:233–257

    CAS  Google Scholar 

  8. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    PubMed  Article  CAS  Google Scholar 

  9. Cooke F, MacInnes CD, Prevett JP (1975) Gene flow between breeding populations of lesser snow geese. Auk 92:493–510

    Google Scholar 

  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  11. Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates J Mol Biol 212:599–634

    PubMed  Article  CAS  Google Scholar 

  12. Engelhardt KA, Kadlec MJA, Roy VL, Powell JA (2000) Evaluation of translocation criteria: case study with trumpeter swans (Cygnus buccinator). Biol Conserv 94:173–181

    Article  Google Scholar 

  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    PubMed  Article  CAS  Google Scholar 

  14. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes – application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  15. Felsenstein J (1989) PHYLIP – phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  16. Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48:361–372

    PubMed  Article  CAS  Google Scholar 

  17. Goudet J (1995) F-STAT version 1–2: a computer program to calculate F-statistic. J Hered 86:485–486

    Google Scholar 

  18. Haig SM (1998) Molecular contributions to conservation. Ecology 79:413–425

    Article  Google Scholar 

  19. Hansen HA (1973) Trumpeter swan management. Wildfowl 24:27–32

    Google Scholar 

  20. James ML (2000) Status of the trumpeter swan (Cygnus buccinator) in Alberta. Alberta Wildlife Status Report. I. M. G. M. D. R. C. Prescott. Edmonton, Alberta, Canada

    Google Scholar 

  21. Kahn NW, St. John J, Quinn TW (1998) Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115:1074–1078

    Google Scholar 

  22. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Article  CAS  Google Scholar 

  23. Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial-DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190

    PubMed  CAS  Google Scholar 

  24. MacKay RH (1981) The trumpeter swan – an endangered species in Canada. Proceedings and Papers of the Ninth Trumpeter Swan Society Conference, 22–23

  25. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  26. Marsolais JV, White BN (1997) Genetic considerations for the reintroduction of trumpeter swans to Ontario. North Am Swans 26:18–22

    Google Scholar 

  27. Matteson S, Craven S, Compton D (1995) The trumpeter swan. University of Wisconsin Cooperative Extension: 8, Madison, USA

    Google Scholar 

  28. Meng A, Carter RE, Parkin DT (1990) The variability of DNA fingerprints in 3 species of swan. Hered 64:73–80

    CAS  Google Scholar 

  29. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1995) Microsat (Version 1.4d): a computer program for calculating various statistics on microsatellite allele data <http://hpgl.stanford.edu/projects/microsat/≥

  30. Moser TJ (2006) The 2005 North American trumpeter swan survey. U. S. Fish and Wildlife Service, Division of Migratory Bird Management, Denver, USA

    Google Scholar 

  31. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, USA

    Google Scholar 

  32. O’ Brien SJ, Evermann JF (1988) Interactive influence of infectious disease on genetic diversity of natural populations. Trends Ecol Evol 3:254–259

    Article  Google Scholar 

  33. Oyler-McCance SJ, St. John J, Taylor SE, Apa AD, Quinn TW (2005) Population genetics of Gunnison sage-grouse: implications for management. J Wildl Manage 69:630–637

    Article  Google Scholar 

  34. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  35. Pelizza CA, Britten HB (2002) Isozyme analysis reveals genetic differences between three trumpeter swan populations. Waterbirds 25:355–359

    Google Scholar 

  36. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    PubMed  Article  CAS  Google Scholar 

  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  38. Quattro JM, Vrijenhoek RC (1989) Fitness differences among remnant populations of the endangered topminnow. Science 245:976–978

    PubMed  Article  CAS  Google Scholar 

  39. Quinn TW, Wilson AC (1993) Sequence evolution in and around the mitochondrial control region in birds. J Mol Evol 37:417–425

    PubMed  Article  CAS  Google Scholar 

  40. Raymond M, Rousset F (1995) GENEPOP population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  41. Roukonen M, Kvist L, Aarvak T, Markkola J, Morozov VM, Øien IJ, Syroechkovsky EE, Tolvanen P, Lumme J (2004) Population genetic structure and conservation of the lesser white-fronted goose Anser erythropus. Conserv Genetics 5:501–512

    Article  Google Scholar 

  42. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: software for population genetics data analysis Version 2.000. University of Geneva, Switzerland

    Google Scholar 

  43. Scribner KT, Petersen MR, Fields RL et al (2001) Sex-biased gene flow in spectacled eiders (Anatidae): inferences from molecular markers with contrasting modes of inheritance. Evolution 55:2105–2115

    PubMed  CAS  Google Scholar 

  44. Shea RE, Nelson HK, Gillette LN, King JG, Weaver DK (2002) Restoration of trumpeter swans in North America: a century of progress and challenges. Waterbirds 25:296–300

    Google Scholar 

  45. Smouse PE, Long JC, Sokal RR (1986) Multiple-regression and correlation extensions of the Mantel Test of matrix correspondence. Systematic Zool 35:627–632

    Article  Google Scholar 

  46. Sorenson MD, Quinn TW (1998) Numts: a challenge for avian systematics and population biology. Auk 115:214–221

    Google Scholar 

  47. St. John J, Ransler F, Quinn TW, Oyler-McCance SJ. 2006. Characterization of microsatellite loci isolated in trumpeter swan (Cygnus buccinator). Mol Ecol Notes 6:1083–1085

    Article  CAS  Google Scholar 

  48. Swofford DL (2003) PAUP* 4.0 Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland, USA

    Google Scholar 

  49. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed  CAS  Google Scholar 

  50. Talbot SL, Pearce JM, Pierson BJ, Derksen DV, Scribner KT (2003) Molecular status of the dusky Canada goose (Branta canadensis occidentalis): a genetic assessment of a translocation effort. Conserv Genet 4:367–381

    Article  CAS  Google Scholar 

  51. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred form restriction endonuclease mapping and DNA sequence data. III Cladogram Estimation Genetics 132:619–633

    CAS  Google Scholar 

  52. Thalmann O, Hebler J, Poinar HN, Paabo S, Vigilant L (2004) Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol 13:321–335

    PubMed  Article  CAS  Google Scholar 

  53. Tiedemann R, Von Kistowski KG, Noer H (1999) On sex-specific dispersal and mating tactics in the common eider Somateria mollissima as inferred from the genetic structure of breeding colonies. Behavior 136:1145–1155

    Article  Google Scholar 

  54. U. S. Fish and Wildlife Service. 2006. Trumpeter swan survey of the Rocky Mountain Population – Winter 2006. U. S. Fish and Wildlife Service, Migratory Birds and State Programs, Lakewood, USA

  55. Wayne RK, Lehman N, Girman D et al (1991) Conservation genetics of the endangered Isle-Royale gray wolf. Conserv Biol 5:41–51

    Article  Google Scholar 

Download references

Acknowledgements

Many individuals helped make this study possible. Thanks to G. Beyersbergen, S. Comeau, B. Conant, C. Damberg, R. Drewien, K. Dubois, D. Duncan, L. Glass, L. Hanauska-Brown, J. Johnson, S. Kittlesen, M. Linck, B. Long, N. Lyman, E. Malleck, T. McEneaney, S. Patla, M. Petrula, R. Shea, S. Rickenbaugh, J. Morton, L. Jowziak, C. Mitchell, T. Rothe, M. and Vrtiska for collecting samples. We thank A. Breault, R. Oates, R. Trost, and M. Vrtiska for coordinating collection of samples in their regions. J. St. John was integral to this project in countless ways including isolating the microsatellites, offering technical expertise, and graciously reading several drafts of this report. We would also like to thank H-P. Liu, J. Dubovsky, J. Cornely, and G. Ransler for providing editorial comments and constructive criticism on this manuscript. Funding for this project was provided by the U. S. Fish and Wildlife Service Migratory Bird Program and the U. S. Geological Survey through its Science Support Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. J. Oyler-McCance.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oyler-McCance, S.J., Ransler, F.A., Berkman, L.K. et al. A rangewide population genetic study of trumpeter swans. Conserv Genet 8, 1339–1353 (2007). https://doi.org/10.1007/s10592-006-9282-y

Download citation

Keywords

  • Trumpeter swan
  • Cygnus buccinator
  • Microsatellites
  • mtDNA
  • Gene flow
  • Genetic diversity