Skip to main content

Advertisement

Log in

Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California

  • Original Paper
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

California is home to both the native state-threatened Sierra Nevada red fox (Vulpes vulpes necator), which historically inhabited high elevations of the Sierra Nevada and Cascade mountains, and to multiple low-elevation red fox populations thought to be of exotic origin. During the past few decades the lowland populations have dramatically expanded their distribution, and possibly moved into the historic range of the native high-elevation fox. To determine whether the native red fox persists in its historic range in California, we compared mitochondrial cytochrome-b haplotypes of the only currently-known high-elevation population (n = 9 individuals) to samples from 3 modern lowland populations (n = 35) and historic (1911–1941) high-elevation (n = 22) and lowland (n = 7) populations. We found no significant population differentiation among the modern and historic high-elevation populations (average pairwise F ST =  0.06), but these populations differed substantially from all modern and historic lowland populations (average pairwise F ST = 0.52). Among lowland populations, the historic and modern Sacramento Valley populations were not significantly differentiated from one another (F ST =  −0.06), but differed significantly from recently founded populations in the San Francisco Bay region and in southern California (average pairwise F ST = 0.42). Analysis of molecular variance indicated that 3 population groupings (mountain, Sacramento Valley, and other lowland regions) explained 45% of molecular variance (F CT = 0.45) whereas only 4.5% of the variance was partitioned among populations within these groupings (F SC = 0.08). These findings provide strong evidence that the native Sierra Nevada red fox has persisted in northern California. However, all nine samples from this population had the same haplotype, suggesting that several historic haplotypes may have become lost. Unidentified barriers have apparently prevented gene flow from the Sacramento Valley population to other eastern or southern populations in California. Future studies involving nuclear markers are needed to assess the origin of the Sierra Nevada red fox and to quantify levels of nuclear gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aubry KB (1983) The Cascade red fox: distribution, morphology, zoogeography and ecology. University of Washington, Dissertation

    Google Scholar 

  • Aubry KB (1984) The recent history and present distribution of the red fox in Washington. Northwest Sci 58:69–79

    Google Scholar 

  • Aubry KB (1997) The Sierra Nevada red fox (Vulpes vulpes necator). In: Harris JE, Ogan CV (eds) Mesocarnivores of Northern California: biology, management, and survey techniques. The Wildlife Society California North Coast Chapter, Arcata California, pp 47–53

    Google Scholar 

  • Bouzat JL, Lewin HA, Paige KN (1998) The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. Am Natural 152:1–6

    Article  CAS  Google Scholar 

  • Byun SA, Koop BF, Reimchen TE (2002) Evolution of the Dawson caribou (Rangifer tarandus dawsoni). Can J Zool 80:956–960

    Article  Google Scholar 

  • Carmichael LE, Nagy JA, Larter NC, Strobeck C (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol Ecol 10:2787–2798

    PubMed  CAS  Google Scholar 

  • CDFG (1996) The status of rare, threatened and endangered animals and plants of California. California Department of Fish and Game, Sacramento California

    Google Scholar 

  • CDFG (1999) Managing non-native species in California: the red fox. California Department of Fish and Game, Sacramento California

    Google Scholar 

  • CDFG (2004) Special animals. California Department of Fish and Game, Sacramento, California

    Google Scholar 

  • Churcher CS (1959) The specific status of the New World red fox. J Mammal 40:513–520

    Article  Google Scholar 

  • Cooper A (1994) DNA from museum specimens. In: Herrmann B, Hummel S (eds) Ancient DNA. Springer-Verlag, New York, pp 149–165

    Google Scholar 

  • Dekker D (1989) Population fluctuations and spatial relationships among wolves, Canis lupus, coyotes, Canis latrans, and red foxes, Vulpes vulpes, in Jasper National Park. Alberta Can Field-Natl 103:261–264

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Farias V, Fuller TK, Wayne RK, Sauvajot RM (2005) Survival and cause-specific mortality of gray foxes (Urocyon cinereoargenteus) in southern California. J Zool Lond 266:249–254

    Article  Google Scholar 

  • Fitzpatrick BM (1999) Genetic founder effects and admixture in California’s non-native red foxes. MA thesis Humboldt State University, Arcata California

    Google Scholar 

  • Fuller AK, Harrison DJ (2006) Ecology of red foxes and niche relationships with coyotes on Mount Desert Island, Maine. Final contract report to Acadia National Park and US National Park Service, 41 pp

  • Frati F, Hartl GB, Lovari S, Delibes M, Markov G (1998) Quaternary radiation and genetic structure of the red fox Vulpes vulpes in the Mediterranean Basin, as revealed by allozymes and mitochondrial DNA. J Zool Lond 245:43–51

    Article  Google Scholar 

  • Gautschi B, Tenzer I, Müller JP, Schmid B (2000) Isolation and characterization of microsatellite loci in the bearded vulture (Gypaetus barbatus) and cross-amplification in three Old World vulture species. Mol Ecol 31:101–112

    Google Scholar 

  • Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile gray wolf. Mol Ecol 13:2481–2490

    Article  PubMed  CAS  Google Scholar 

  • Geffen E, Mercure A, Girman DJ, Macdonald DW, Wayne RK (1992) Phylogenetic relationships of the fox-like canids: mitochondrial DNA restriction fragment, site and cytochrome b sequence analyses. J Zool Lond 228:27–39

    Article  Google Scholar 

  • Goldstein PZ, DeSalle R (2003) Calibrating phylogenetic species formation in a threatened insect using DNA from historical specimens. Mol Ecol 12:1993–1998

    Article  PubMed  CAS  Google Scholar 

  • Gould GI (1980) Status of the red fox in California. California Department of Fish and Game, Sacramento California

    Google Scholar 

  • Green R (2006) Distribution and habitat associations of forest carnivores and an evaluation of the California Wildlife Habitat Relationships model for American marten in Sequoia and Kings Canyon National Parks. MS Thesis, Humboldt State University, Arcata California

    Google Scholar 

  • Grinnell J, Dixon J, Linsdale J (1930) Vertebrate natural history of a section of northern California through the Lassen Peak region. University of California Press, Berkeley California

    Google Scholar 

  • Grinnell J, Dixon J, Linsdale J (1937) Fur-bearing mammals of California. University of California Press, Berkeley California

    Google Scholar 

  • Hale ML, Lurz PWW, Shirley MDF, Rushton S, Fuller RM, Wolff K (2001) Impact of landscape management on the genetic structure of red squirrel populations. Science 293:2246–2248

    Article  PubMed  CAS  Google Scholar 

  • Hall ER (1981) The mammals of North America. John Wiley & Sons, New York New York

    Google Scholar 

  • Harper GL, MacLean N, Goulson D (2006) Analysis of museum specimens suggests extreme genetic drift in the adonis blue butterfly (Polyommatus bellargus). Biol J Linn Soc 88:447–452

    Article  Google Scholar 

  • Hofreiter M, Siedel H, Van Neer W, Vigilant L (2003) Mitochondrial DNA sequence from an enigmatic gorilla population (Gorilla gorilla uellensis). Am J Phys Anthro 121:361–368

    Article  Google Scholar 

  • Hummel S (2003) Ancient DNA typing: methods, strategies and applications. Springer, New York

    Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc R Soc Lond B 270:2125–2132

    Article  Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Article  PubMed  CAS  Google Scholar 

  • Kamler JF, Ballard WB (2002) A review of native and nonnative red foxes in North America. Wildl Soc Bull 30:370–379

    Google Scholar 

  • Kucera TE (1995) Recent photograph of a Sierra Nevada red fox. Cal Fish Game 81:43–44

    Google Scholar 

  • Kucera TE (1999) Sierra Nevada red fox survey: final report CDFG Contract FG6160WM. University of California, Berkeley California

    Google Scholar 

  • Kurtén B (1980) Pleistocene mammals of North America. Columbia University Press, New York

    Google Scholar 

  • Larivière S, Pasitschniak-Arts M (1996) Vulpes vulpes. Mamm Species 537:1–11

    Article  Google Scholar 

  • Lewis JC, Golightly RT Jr, Jurek, RM (1995) Introduction of non-native red foxes in California: Implications for the Sierra Nevada red fox. Trans West Sec Wildl Soc 31:29–32

    Google Scholar 

  • Lewis JC, Sallee KL, Golightly RT (1993) Introduced red fox in California. Nongame Bird and Mammal Report 93-10. California Department of Fish and Game, Sacramento California

    Google Scholar 

  • Lewis JC, Sallee KL, Golightly RT (1999). Introduction and range expansion of nonnative red foxes (Vulpes vulpes) in California. Am Midl Nat 142:372–381

    Article  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ et al. (2005) Genotype sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819

    Article  PubMed  CAS  Google Scholar 

  • Merriam CH (1900) Preliminary revision of the North American red foxes. Proc Wash Acad Sci 2:661–676

    Google Scholar 

  • Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Nat Acad Sci USA 100:4334–4339

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943

    Article  PubMed  Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analysis from ancient DNA. Ann Rev Gen 38:645–679

    Article  CAS  Google Scholar 

  • Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Natl 153:492–508

    Article  Google Scholar 

  • Perrine JD (2005) Ecology of red fox (Vulpes vulpes) in the Lassen Peak region of California, USA. PhD dissertation. University of California, Berkeley

    Google Scholar 

  • Phillips RL, Andews RD, Storm GL, Bishop RA (1972) Dispersal and mortality of red foxes. J Wildl Mgmt 36:237–248

    Article  Google Scholar 

  • Ralls K, White PJ (1995) Predation on endangered San Joaquin kit foxes by larger canids. J Mammal 76:732–729

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Ecology 43:223–225

    Google Scholar 

  • Robinson NA, Marks CA (2001) Genetic structure and dispersal of red foxes (Vulpes vulpes) in urban Melbourne. Aust J Zool 49:589–560

    Article  Google Scholar 

  • Roest AI (1977) Taxonomic status of the red fox in California. Final Report, Job II-1.3. California Polytechnic State University, San Luis Obispo, California

  • Roest AI (1979) Subspecies of North American red foxes (Vulpes vulpes). Unpublished presentation to the 59th Annual Meeting of the American Society of Mammalogists, Oregon State University, Corvallis, Oregon

  • Rosatte RC (2002) Long distance movement by a coyote, Canis latrans, and red fox, Vulpes vulpes, in Ontario: implications for disease-spread. Can Field-Natl 116:129–131

    Google Scholar 

  • Roy MS, Geffen E, Smith D, Wayne RK (1996) Molecular genetics of pre-1940 red wolves. Conserv Biol 10:1413–1424

    Article  Google Scholar 

  • Sacks BN, Brown SK, Ernest HB (2004) Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol Ecol 13:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Sacks BN, Mitchell BR, Williams CL, Ernest HB (2005) Coyote movements and social structure along a cryptic population genetic subdivision. Mol Ecol 14:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Sargeant AB, Allen SH (1989) Observed interactions between coyotes and red foxes. J Mammal 70:631–633

    Article  Google Scholar 

  • Schempf PF, White M (1977) Status of six furbearer populations in the mountains of northern California. United States Forest Service, California

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2000: a software for population genetics data analysis Genetics and Biometry Laboratory. University of Geneva, Switzerland

    Google Scholar 

  • Simonsen V, Pertoldi C, Madsen AB, Loeschcke V (2003) Genetic differentiation of foxes (Vulpes vulpes) analysed by means of craniometry and isozymes. J Nat Conserv 11:109–116

    Article  Google Scholar 

  • Storm GL, Andrews RD, Phillips RL, Bishop RA, Siniff DB, Tester JR (1976) Morphology, reproduction, dispersal, and mortality of midwestern red fox populations. Wildl Monogr 49:1–82

    Google Scholar 

  • Swanson BJ, Fuhrmann RT, Crabtree RL (2005) Elevational isolation of red fox populations in the Greater Yellowstone Ecosystem. Conserv Genet 6:123–131

    Article  Google Scholar 

  • Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31:101–112

    Article  PubMed  CAS  Google Scholar 

  • Voigt DR (1987) Red fox. In: Novak M, Baker JA, Obbard ME, Malloch B (eds) Wild Furbearer management and conservation in North America. Ontario Ministry of Natural Resources, Ontario Canada, pp 379–392

    Google Scholar 

  • Wandeler P, Funk SM, Largiadér CR, Gloors S, Breitenmoser U (2003a) The city-fox phenomenon: genetic consequences of a recent colonization of urban habitat. Mol Ecol 12:647–656

    Article  CAS  Google Scholar 

  • Wandeler P, Smith S, Morin PA, Pettifor RA, Funk SM (2003b) Patterns of nuclear DNA degeneration over time: A case study in historic teeth samples. Mol Ecol 12:1087–1093

    Article  CAS  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor. Pop. Biol 7:256–276

    Article  CAS  Google Scholar 

  • Wayne RK, Geffen E, Girman DJ, Koepfli KP, Lau LM, Marshall CR (1997) Molecular systematics of the Canidae. Syst Biol 46:622–653

    Article  PubMed  CAS  Google Scholar 

  • Wayne RK, Nash WG, O’Brien SJ (1987) Chromosomal evolution of the Canidae II: divergence from the primitive carnivore karyotype. Cytog Cell Genet 44:134–141

    CAS  Google Scholar 

  • Weber DS, Stewart BS, Garza JC, Lehman N (2000) An empirical genetic assessment of the severity of the northern elephant seal population bottleneck. Curr Bio 10:1287–1290

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST≠ 1/(4Nm + 1). Heredity 82:117–225

    Article  PubMed  Google Scholar 

  • Wisely SM, Buskirk SW, Fleming MA, McDonald DB, Ostrander EA (2002) Genetic diversity and fitness in black-footed ferrets before and during a bottleneck. J Hered 93:231–237

    Article  PubMed  CAS  Google Scholar 

  • Wisely SM, Buskirk SW, Russell GA, Aubry KB, Zielinski WJ (2004a) Genetic diversity and structure of the fisher (Martes pennanti) in a peninsular and peripheral metapopulation. J Mammal 85:640–648

    Article  Google Scholar 

  • Wisely SM, Maldonado JE, Fleischer RC (2004b) A technique for sampling ancient DNA that minimizes damage to museum specimens. Conserv Genet 5:105–107

    Article  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4, variability within and among natural populations. University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Zielinski WJ, Truex RL, Schlexer FV, Campbell LA, Carroll C (2005) Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA. J Biogeogr 32:1385–1407

    Article  Google Scholar 

Download references

Acknowledgements

The following collection managers made specimens available for this study: J. Bogiatto (California State University, Chico), P. Collins (Santa Barbara Natural History Museum), C. Conroy and E. Lacey (Museum of Vertebrate Zoology), J. Dines and I. Horovitz (Natural History Museum of Los Angeles County), and T. Schweitzer (Fort Roosevelt Vertebrate Collection). Special thanks to M. Schwartz and two anonymous reviewers whose comments greatly improved the manuscript. K. Aubry, S. Beissinger, A. Bidlack, C. Epps, B. Lidicker, P. Palsbøll, J. Patton, M. Statham and S. Wisely provided additional manuscript comments and suggestions. This research was supported in part by the USDI National Park Service’s Biological Resource Management Division and Lassen Volcanic National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Perrine.

Appendix

Appendix

Table 4 Red fox specimens obtained for this study (n = 85)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrine, J.D., Pollinger, J.P., Sacks, B.N. et al. Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California. Conserv Genet 8, 1083–1095 (2007). https://doi.org/10.1007/s10592-006-9265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9265-z

Keywords

Navigation