Advertisement

Conservation Genetics

, Volume 7, Issue 6, pp 837–845 | Cite as

Phylogeographical structure and conservation genetics of wild grapevine

  • F. Grassi
  • M. Labra
  • S. Imazio
  • R. Ocete Rubio
  • O. Failla
  • A. Scienza
  • F. Sala
Article

Abstract

The distribution of Vitis vinifera subsp. silvestris, the wild grapevine subspecies of Vitis vinifera L., has been dramatically reduced in its major sites of diffusion, at first by the spread, over the last 150 years, of pathogens from North America and, more recently, with fragmentation of habitat and disbranching by humans. In this work, 418 wild grapevine samples, belonging to 78 populations, were collected in their main Mediterranean distribution areas, including the Caucasus area, and the extent of their genetic variability evaluated by analysing plastid microsatellite DNA polymorphism. Results show low haplotype diversity value, with five haplotypes detected within the analysed populations. The highest within-population haplotypic diversity, with the presence of all five detected haplotypes, was found in the Caucasus regions and in the central regions of Italy. The distribution of all detected haplotypes suggests the Caucasian region as the possible center of origin of Vitis vinifera subsp. silvestris. A principal plastid lineage was found to be fixed in several locations, in the Northernmost European countries and in the Southern island of Sardinia. These results draw attention to two different refugium sites in the Mediterranean basin and suggest that conservation priority should be given to grapevine populations still preserved in hotspots of these regions.

Key words

biodiversity chloroplast microsatellite conservation phylogeography populations Vitis vinifera subsp. silvestris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the Italian Ministry of Environment and Environmental Protection, within the research project “Research and development in biotechnology applied to the protection of the environment, in collaboration with the Popular Republic of China” (years 2005–2007) and by the FIRB-RNBE01SF project, MIUR, Italy. We wish to thank W. Tiefenbrunner, F.␣Regner, P. Madera, F. Selvi., M.A. Lopez, G.␣Lovicu, for their valuable help in collecting wild grapewine and Roberto Brontini for technical assistance in the molecular analysis.

References

  1. Anzani R, Failla O, Scienza A, Campostrini F (1990) Wild grapevine (Vitis vinifera var. silvestris) in Italy: distribution, characteristics and germplasm preservation – report. Vitis, 97–112. Special issueGoogle Scholar
  2. Arnold C, Gilett F, Gobat JM (1998) Situation de la vigne sauvage Vitis vinifera L sp. Sylvestris (Gmelin) Hegi en Europe. Vitis 37(4):159–170Google Scholar
  3. Arnold C, Schnitzler A, Douard A (2002) Conservation and reintroduction of rare forest species: an example from wild grapevine (Vitis vinifera ssp. silvestris Gmelin, Hegi) in Alsace. Oral communication, Internation Symposium on Dynamics and Conservation of Genetic Diversity in Forest Ecoystems, Strasbourg, 2–5 December 2002.Google Scholar
  4. Dumolin-Lapègue S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR-based method. Theor. App. Genet. 91:1253–1256Google Scholar
  5. Dumolin-Lapègue S, Demesure B, Fineschi S, Le Come V, Petit RJ (1997a) Phylogeographic structure of white oaks throughout the european continent. Genetics 146:1475–1487PubMedGoogle Scholar
  6. El Mousadik A, Petit RJ (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol. Ecol. 5: 547–555CrossRefPubMedGoogle Scholar
  7. Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 80:584–593Google Scholar
  8. Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism revelas little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol. Ecol. 9:1495–1503CrossRefPubMedGoogle Scholar
  9. Grassi F, Imazio S, Ocete R, Lopez MA, Failla O, Scienza A, Sala F, Labra M (2003a) Genetic isolation and diffusion of wild grapevine Italian and Spanish populations as estimated by nuclear and chloroplast SSR analysis. Plant Biol. 5:608–614CrossRefGoogle Scholar
  10. Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F (2003b) Evidence of secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 107:1315–1320CrossRefGoogle Scholar
  11. Hegi G (1925) Illustrierte Flora von Mitteleuropa. Karl Hans Verlag, MünchenGoogle Scholar
  12. Hewitt GM (2001) Speciation, hybrid zones and phylogeography or seeing genes in space and time. Mol. Ecol. 10: 537–549CrossRefPubMedGoogle Scholar
  13. Holub J, Procházka F (2000) Red list of vascular plants of the Czech Republic. Preslia 72: 187–230Google Scholar
  14. Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor. Appl. Genet. 103: 896–904CrossRefGoogle Scholar
  15. King RA, Ferris C (1998) Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 7: 1151–1161CrossRefGoogle Scholar
  16. Kozjak P, Korosec-Koruza Z, Javornik B (2003) Characterisation of cv. Refosk (Vitis vinifera L.) by SSR markers. Vitis. 42: 83–86Google Scholar
  17. Labra M, Moriondo G, Schnaeider A, Grassi F, Failla O, Scienza O, Sala F (2002a) Biodiversity of grapevines (Vitis vinifera L.) grown in the Aosta Valley. Vitis 41(2): 89–92Google Scholar
  18. Labra M, Failla O, Forni G, Ghiani A, Scienza A, Sala F (2002b) Microsatellite analysis to define genetic diversity of grapevines (Vitis vinifera L.) grown in Central and Western Mediterranean countries. Journal International des Sciences de la Vigne et du Vin 36: 11–20Google Scholar
  19. Labra M, Carreno-Sanchez E, Bardini M, Basso B, Sala F, Scienza A (2001) Extraction and purification of DNA from grapevine leaves. Vitis 40: 101–102Google Scholar
  20. Lacombe T (2002) Contribution a‘ la caracte’risation et a‘ la protection in situ des populations de Vitis vinifera L. spp silvestris (Gmelin) Hegi, en France. Oral communication, BRG National Symposium, La Châtre-BerryGoogle Scholar
  21. Marchelli P, Gallo L, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. Distribution area. Theorl. Appl. Genet. 97: 642–646CrossRefGoogle Scholar
  22. Negrul AM (1938) Evolution of cultivated forms of grapes. CR Acad. USSR N.S. 18: 585–588Google Scholar
  23. Ocete R, López MA, Pérez MA, Del Tío R, Lara M (1999) Las poblaciones espanolas de vid silvestre: Característics de un recurso fitogenetico a conservar. Monografías INIA, Agrícola, Madrid, pp. 1–52Google Scholar
  24. Petit RJ, Csaikl UM, Bordács S et al. (2002) Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations. For. Eco.l Manag. 156: 5–26CrossRefGoogle Scholar
  25. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 14(3): 689–701CrossRefPubMedGoogle Scholar
  26. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237–1245PubMedGoogle Scholar
  27. Provan J, Powell W, Dewar H, Bryan G, Machray GC, Waugh R (1999) An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proc. R Soc. Lond. B. 266:633–639CrossRefGoogle Scholar
  28. Rossetto M, McNally J, Henry RJ (2002) Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor. Appl. Genet. 104: 61–66CrossRefPubMedGoogle Scholar
  29. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibanez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109: 1448–1458CrossRefPubMedGoogle Scholar
  30. Weising K, Gardner R, (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42: 9–19CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • F. Grassi
    • 1
  • M. Labra
    • 2
  • S. Imazio
    • 3
  • R. Ocete Rubio
    • 4
  • O. Failla
    • 3
  • A. Scienza
    • 3
  • F. Sala
    • 1
    • 5
  1. 1.Botanical Garden, Department of BiologyUniversity of MilanMilanItaly
  2. 2.Department of Environmental ScienceUniversity of Milano-BicoccaMilanItaly
  3. 3.Department of Crop SciencesUniversity of MilanMilanoItaly
  4. 4.Laboratory of Applied ZoologyUniversity of SevillaSevillaSpain
  5. 5.IBFMilanItaly

Personalised recommendations