Skip to main content
Log in

Genetic variation at MHC, mitochondrial and microsatellite loci in isolated populations of Brown trout (Salmo  trutta)

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We have studied levels and distribution of genetic variation in nine isolated populations of Brown trout in NW Spain. In the present study, we have tried to test the importance of preservation of genetic variability for the survival of a set of isolated Brown trout (Salmo trutta) populations from the same river drainage. We screened genetic variation in three different markers, mitochondrial, microsatellites and Major Histocompatibility Complex (MHC), presumed to be under different selective pressures. Overall, genetic diversity varied considerably across populations and the distribution of genetic variation was similar at MHC and microsatellites; highly polymorphic populations at the microsatellite loci were also highly polymorphic at the MHC. We also observed high levels of differentiation among populations. Although we found evidence suggesting that balancing selection has influenced the long term evolution of the MHC, genetic drift seems to have eroded the effect of selection, becoming the predominant evolutionary force shaping genetic variation in some of the smaller populations. Despite current lack of variation at the MHC, these small populations seem to have remained viable for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl. Acad. Sci. USA 101:3490–3494

    PubMed  CAS  Google Scholar 

  • Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236

    PubMed  CAS  Google Scholar 

  • Antunes A, Faria R, Weiss S, Alexandrino P (2001) Complex evolutionary history in the brown trout: Insights on the recognition of conservation units. Conserv. Genet. 2:337–347

    Google Scholar 

  • Apostolidis A, Karakousis Y, Triantaphyllidis C (1996) Genetic divergence and phylogenetic relationships among Salmo trutta L. (Brown trout) populations from Greece and other European countries. Heredity 76:551–560

    Google Scholar 

  • Arkush KD, Giese AR, Mendonca HL, McBride AM, Marty GD, Hedrick PW (2002) Resistance to three pathogens in the endangered winter-run Chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Can. J. Fish. Aquat. Sci. 59:966–975

    Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1998) GENETIX, logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome et Populations, CNRS UPR 9060. Universite de Montpellier II, Montpellier

    Google Scholar 

  • Bergstrom TF, Josefsson A, Erlich HA, Gyllensten U (1998) Recent origin of HLA-DRB1 alleles and implications for human evolution. Nature Genet. 18:237–242

    PubMed  CAS  Google Scholar 

  • Bernatchez L (2001) The evolutionary history of Brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:351–379

    PubMed  CAS  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years. Mol. Ecol. 16:363–377

    CAS  Google Scholar 

  • Blanco JC, González JL (1992) Libro rojo de los vertebrados de España. Colección Técnica. ICONA, Madrid

    Google Scholar 

  • Bouza C, Arias J, Castro J, Sanchez L, Martínez P (1999) Genetic structure of Brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Mol. Ecol. 8:1991–2001

    PubMed  CAS  Google Scholar 

  • Brown JH, Jardtzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) 3-Dimensional structure of the human class-II histocompatibility antigen HLA-DR1. Nature 364:33–39

    PubMed  CAS  Google Scholar 

  • Cano JM (2002) Diferenciación de poblaciones de trucha común (Salmo trutta L.). PhD thesis, Universidad de Oviedo, Spain

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1659

    PubMed  CAS  Google Scholar 

  • Cortey M, García-Marín JL (2002) Evidence for phylogeographically informative sequence variation in the mitochondrial control region of Atlantic Brown trout. J. Fish Biol. 60:1058–1063

    CAS  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15:290–295

    PubMed  Google Scholar 

  • Crozier WW, Ferguson A (1986) Electrophoretic examination of the population structure of Brown trout, Salmo trutta L, from the Lough Neagh catchment, Northern-Ireland. J. Fish Biol. 28:459–477

    Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91:3166–3170

    CAS  Google Scholar 

  • Doiron S, Bernatchez L, Blier PU (2002) A comparative mitogenomic analysis of the potential adaptive value of arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Mol. Biol. Evol.19:1902–1909

    PubMed  CAS  Google Scholar 

  • Ellegren H, Hartman G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc. Natl. Acad. Sci. USA 90:8150–8153

    PubMed  CAS  Google Scholar 

  • Elvira B (1996) Endangered freshwater fish of Spain. In: Kirchofer A, Hefti D (eds). Conservation of Endangered Freshwater Fish in Europe. Birkhäuser Verlag, Basel, pp. 55–61

    Google Scholar 

  • Erlandsson J, Rolán-Alvarez E, Johannesson K (1998) Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores. Evol. Ecol. 12:913–924

    Google Scholar 

  • Estoup A, Largiader CR, Perrot E, Chourrout D (1996) Rapid one tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol. Mar. Biol. Biotechnol. 5:295–298

    CAS  Google Scholar 

  • Fearnhead P, Donnelly PJ (2001) Estimating recombination rates from population genetic data. Genetics 159:1299–1318

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1984) Distance methods for inferring phylogenies: a justification. Evolution 38:16–24

    Google Scholar 

  • Ferguson A (1989) Genetic differences among Brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshw. Biol. 21:35–46

    Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin LR (1980) Evolutionary changes in small populations. In: Soulé ME (eds), Conservation Biology: An evolutionary-ecological perspective. Sinauer Associates, Sunderland, pp. 135–149

    Google Scholar 

  • García-Marín JL, Jorde PE, Ryman N, Utter F, Pla C (1991). Management implications of genetic differentiation between native and hatchery populations of Brown trout (Salmo trutta) in Spain. Aquaculture 95:235–249

    Google Scholar 

  • García-Marín JL, Sanz N, Pla C (1998) Proportions of native and introduced Brown trout in adjacent fished and unfished Spanish rivers. Conserv. Biol. 2:313–319

    Google Scholar 

  • García-Marín JL, Utter FM, Pla C (1999) Postglacial colonization of Brown trout in Europe based on distribution of allozyme variants. Heredity 82:46–56

    Google Scholar 

  • Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    PubMed  CAS  Google Scholar 

  • Giuffra E, Bernatchez L, Guyomard R (1994) Mitochondrial control region and protein-coding genes sequence variation among phenotypic forms of Brown trout (Salmo trutta) from northern Italy. Mol. Ecol. 3:161–171

    PubMed  CAS  Google Scholar 

  • Hansen MM, Loeschcke V (1996) Genetic differentiation among Danish Brown trout populations, as detected by RFLP analysis of PCR amplified mitochondrial DNA segments. J. Fish Biol. 48:422–436

    CAS  Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol. Ecol. 11:197–214

    PubMed  CAS  Google Scholar 

  • Hedrick PW (1994) Evolutionary genetics of the Major Histocompatibility Complex. Am. Nat. 143:945–964

    Google Scholar 

  • Hedrick PW (2005) Genetics of populations. Jones and Bartlett, Sudbury

    Google Scholar 

  • Hedrick PW, Hedgecock D, Hamelberg S (1995) Effective population size in winter-run chinook salmon. Conserv. Biol. 9:615–624

    Google Scholar 

  • Hedrick PW, Lee RN, Garrigan D (2002) Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Mol. Ecol. 11:1905–1913

    PubMed  CAS  Google Scholar 

  • Hedrick PW, Parker KM, Gutiérrez-Espeleta GA, Rattink A, Lievers K (2000) Major histocompatibility complex variation in the Arabian Oryx. Evolution 5:2145–2151

    Google Scholar 

  • Hedrick PW, Parker KM, Lee RN (2001) Using microsatellite and MHC variation to identify species, ESUs, and MUs in the endangered Sonoran topminnow. Mol. Ecol. 10:1399–1412

    PubMed  CAS  Google Scholar 

  • Hedrick PW, Thomson G (1983) Evidence for balancing selection at HLA. Genetics 104: 449–456

    PubMed  CAS  Google Scholar 

  • Hochberg Y (1989) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    Google Scholar 

  • Hordvik I, Grimholt U, Fosse VM, Lie O, Endressen C (1993) Cloning and sequence analysis of cDNAs encoding the MHC class II beta chain in Atlantic salmon (Salmo salar). Immunogenetics 37:437–441

    PubMed  CAS  Google Scholar 

  • Hudson RR (2001) Two-locus sampling distributions and their application. Genetics 159:1805–1817

    PubMed  CAS  Google Scholar 

  • Hughes AL (1991) MHC polymorphism and the design of captive breeding programs. Conserv. Biol. 5:249–251

    Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex Class-I loci reveals overdominant selection. Nature 335:167–170

    PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. USA 86:958–962

    PubMed  CAS  Google Scholar 

  • Hurst CD, Bartlett SE, Davidson WS, Bruce IJ (1999) The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar. Gene 239:237–242

    PubMed  CAS  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed), Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132

    Google Scholar 

  • Knox D, Lehmann K, Reddin DG, Verspoor E (2002) Genotyping of archival Atlantic salmon scales from northern Quebec and West Greenland using novel PCR primers for degraded mtDNA. J. Fish Biol. 60:266–270

    CAS  Google Scholar 

  • Koskinen MT, Haugen TO, Primmer CR (2002) Contemporary fisherian life-history evolution in small salmonid populations. Nature 419:826–830

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen I, Nei M (2000) MEGA: Molecular Evolutionary Genetics Analysis Version 2.0. Pennsylvania State University, University Park, PA

    Google Scholar 

  • Laikre L, Antunes A, Apostolidis A, Berrebi P, Duguid A, Ferguson A, García-Marín JL, Guyomard R, Hansen MM, Hindar K, Koljonen ML, Largiader C, Martínez P, Nielsen E, Palm S, Ruzzante D, Ryman N, Triantaphyllidis C (1999) Conservation Genetic Management of Brown Trout (Salmo trutta) in Europe. Report by the Concerted action on identification, management and exploitation of genetic resources in the Brown trout (Salmo trutta) (“TROUTCONCERT”; EU FAIR CT97–3882).

  • Laikre L, Ryman N (1996) Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio 25:504–509

    Google Scholar 

  • Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol. Ecol. 10:2525–2539

    PubMed  CAS  Google Scholar 

  • Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T (2001a) Association between major histocompatibility complex class II B alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 268:479–485

    CAS  Google Scholar 

  • Langefors A, Lohm J, von Schantz T (2001b) Allelic polymorphism in MHC class II B in four populations of Atlantic salmon (Salmo salar). Immunogenetics 53:329–336

    CAS  Google Scholar 

  • Machordom A, García-Marín JL, Sanz N, Almodóvar A, Pla C (1999) Allozyme diversity in Brown trout (Salmo trutta) from Central Spain: Genetic consequences of restocking. Freshw. Biol. 41:707–717

    CAS  Google Scholar 

  • Machordom A, Suárez J, Almodóvar A, Bautista JM (2000) Mitochondrial haplotype variation and phylogeography of Iberian Brown trout populations. Mol. Ecol. 9:1325–1338

    CAS  Google Scholar 

  • Martinez JL, Moran P, Garcia-Vazquez E (1999) Dinucleotide repeat polymorphism at the SS4, SS6 and SS11 loci in Atlantic salmon (Salmo salar). Anim. Genet. 30:464–465

    PubMed  CAS  Google Scholar 

  • Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50:168–200

    PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the ADH locus in drosophila. Nature 351:652–654

    PubMed  CAS  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004a) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol. Ecol. 13:3709–3721

    CAS  Google Scholar 

  • Miller HC, Lambert DM (2004b) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–191

    CAS  Google Scholar 

  • Miller KM, Kaukinen KH, Beachman TD, Withler RE (2001) Geographic heterogeneity in natural selection on an MHC locus. Genetica 111:237–257

    PubMed  CAS  Google Scholar 

  • Miller PS, Hedrick PW (1991) MHC polymorphism and the design of captive breeding programs: Simple solutions are not the answer. Conserv. Biol. 5:556–558

    Google Scholar 

  • Moritz C (1994) Defining “Evolutionarily significant units” for conservation. Trends Ecol. Evol. 9:373–375

    Google Scholar 

  • Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228

    Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51:238–254

    PubMed  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3:418–426

    PubMed  CAS  Google Scholar 

  • Nilsson J, Gross R, Asplund T, Dove O, Jansson H, Kelloniemi J, Kohlmann K, Löytynoja A, Nielsen EE, Paaver T, Primmer CR, Titov S, Vasemägi A, Veselov A, Öst T, Lumme J (2001) Matrilinear phylogeography of Atlantic salmon (Salmo salar L.) in Europe and postglacial colonization of the Baltic Sea area. Mol. Ecol. 10:89–102

    PubMed  CAS  Google Scholar 

  • O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Colly L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434

    PubMed  CAS  Google Scholar 

  • Ojanguren AF (2000) Efectos de factores ambientales y del tamaño de huevo sobre eficacia bioló gica en trucha común (Salmo trutta L.). PhD thesis, Universidad de Oviedo, Spain

    Google Scholar 

  • Olsen KH, Grahn M, Lohm J, Langefors A (1998) MHC and kin discrimination in juvenile Arctic charr, Salvelinus alpinus (L.). Anim. Behav. 56:319–327

    PubMed  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766–2770

    PubMed  CAS  Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl. Acad. Sci. USA 95:3714–3719

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (2002) The effect of recombination on the accuracy of phylogeny estimation. J. Mol. Evol. 54:396–402

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9:487–488

    PubMed  CAS  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19:2092–2100

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86:248–249

    Google Scholar 

  • Reyes-Gavilán FG, Garrido R, Nicieza AG, Toledo M, Braña F (1995) Variability in growth, density and age structure of Brown trout populations under contrasting environmental and managerial conditions. In: Harper DM, Ferguson ADJ (eds). The ecological basis for river management. John Wiley & Sons Ltd., New York

    Google Scholar 

  • Richman AD, Herrera LG, Nash D (2003a) Evolution of MHC class II E beta diversity within the genus Peromyscus. Genetics164:289–297

    Article  CAS  Google Scholar 

  • Richman AD, Herrera LG, Nash D, Schierup MH (2003b) Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyseus maniculatus. Genet. Res. 82:89–99

    CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    PubMed  CAS  Google Scholar 

  • Ryman N (1983) Patterns of distribution of biochemical genetic variation in salmonids: differences between species. Aquaculture 33:1–21

    Google Scholar 

  • Schierup MH, Hein J (2000) Consequences of recombination on traditional phylogenetic analysis. Genetics 156:879–891

    PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin version 2.000: A software for population genetics data analysis. Genetic and Biomedical Laboratory, University of Geneva, Geneva

    Google Scholar 

  • Seddon JM, Baverstock PR (1999) Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol. Ecol. 8:2071–2079

    PubMed  CAS  Google Scholar 

  • Shrimpton JM, Heath DD (2003) Census vs. effective population size in chinook salmon: large- and small-scale environmental perturbation effects. Mol. Ecol. 12:2571–2583

    PubMed  CAS  Google Scholar 

  • Shriner D, Nickle DC, Jensen MA, Mullins JI (2003) Potential impact of recombination on sitewise approaches for detecting positive natural selection. Genet. Res. 81:115–121

    PubMed  CAS  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MA, Hedrick RP, Nehring RB, Stet RJM, Secombes C, Parham P (2001) Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J. Immunol. 66:3297–3308

    Google Scholar 

  • Slade RW (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 249:163–171

    CAS  Google Scholar 

  • Slettan A, Olsaker I, Lie O (1995) Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim. Genet. 26:281–282

    PubMed  CAS  Google Scholar 

  • Smulders MJM, Snoek LB, Booy G, Vosman B (2003) Complete loss of MHC genetic diversity in the Common Hamster (Cricetus cricetus) population in The Netherlands. Consequences for conservation strategies. Conserv. Genet. 4:441–451

    CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Takahata N, Satta Y (1998) Footprints of intragenic recombination at HLA loci. Immunogenetics 47:430–441

    PubMed  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data.III. Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782

    PubMed  CAS  Google Scholar 

  • Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882

    Google Scholar 

  • Vrijenhoek RC, Leberg PL (1991) Let’s not throw the baby out with the bathwater: a comment on management for MHC diversity in captive populations. Conserv. Biol. 5:252–254

    Google Scholar 

  • Waldick RC, Kraus SS, Brown M, White BN (2002) Evaluating the effects of historic bottleneck events: an assessment of microsatellite variability in the endangered, North Atlantic right whale. Mol. Ecol. 11:2241–2250

    PubMed  CAS  Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhyncus spp., and the definition of “species” under the endangered species act. Mar. Fish. Rev. 53:11–22

    Google Scholar 

  • Weber DS, Stewart BS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol. Ecol. 13: 711–718

    PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370

    Google Scholar 

Download references

Acknowledgements

We are very grateful to José Manuel Cano, David Alvarez and Alfredo González Nicieza for generously providing the samples used here, and for supplying concrete details about the rivers studied. We appreciate comments on the manuscript from Armando Caballero, Antonio Carvajal-Rodríguez, Humberto Quesada and Emilio Rolán. Pilar Alvariño and Nieves Santamaria assisted with technical support. We are thankful for the help provided by José Luis Martínez and Eva García-Vázquez’s lab. Jose L Campos is supported by a grant from Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, J., Posada, D. & Morán, P. Genetic variation at MHC, mitochondrial and microsatellite loci in isolated populations of Brown trout (Salmo  trutta). Conserv Genet 7, 515–530 (2006). https://doi.org/10.1007/s10592-005-9063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9063-z

Keywords

Navigation