Skip to main content
Log in

First order inertial optimization algorithms with threshold effects associated with dry friction

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In a Hilbert space setting, we consider new first order optimization algorithms which are obtained by temporal discretization of a damped inertial autonomous dynamic involving dry friction. The function f to be minimized is assumed to be differentiable (not necessarily convex). The dry friction potential function \( \varphi \), which has a sharp minimum at the origin, enters the algorithm via its proximal mapping, which acts as a soft thresholding operator on the sum of the velocity and the gradient terms. After a finite number of steps, the structure of the algorithm changes, losing its inertial character to become the steepest descent method. The geometric damping driven by the Hessian of f makes it possible to control and attenuate the oscillations. The algorithm generates convergent sequences when f is convex, and in the nonconvex case when f satisfies the Kurdyka–Lojasiewicz property. The convergence results are robust with respect to numerical errors, and perturbations. The study is then extended to the case of a nonsmooth convex function f, in which case the algorithm involves the proximal operators of f and \(\varphi \) separately. Applications are given to the Lasso problem and nonsmooth d.c. programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

We do not have any associated data in a data repository, so our manuscript does not need a Data Deposition Information item.

References

  1. Adly, S., Attouch, H.: Finite convergence of proximal-gradient inertial algorithms combining dry friction with Hessian-driven damping. SIAM J. Optim. 30(3), 2134–2162 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adly, S., Attouch, H.: Finite time stabilization of continuous inertial dynamics combining dry friction with Hessian-driven damping. J. Conv. Anal. 28(2), 281–310 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Adly, S., Attouch, H.: First-order inertial algorithms involving dry friction damping. Math. Program. 193(1), 405–445 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adly, S., Attouch, H., Cabot, A.: Finite time stabilization of nonlinear oscillators subject to dry friction. In: Nonsmooth Mechanics and Analysis, Adv. Mech. Math. 12, Springer, New York, pp. 289–304 (2006)

  5. Álvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. J. Math. Pures Appl. 81, 747–779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amann, H., Díaz, J.I.: A note on the dynamics of an oscillator in the presence of strong friction. Nonlinear Anal. 55, 209–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems, An approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, regularized Gauss-Seidel methods. Math. Program. 137(1), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Attouch, H., Boţ, R.I., Csetnek, E.R.: Fast optimization via inertial dynamics with closed-loop damping. J. Eur. Math. Soc. (2022). https://doi.org/10.4171/JEMS/1231

    Article  MATH  Google Scholar 

  10. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd ed., MOS/SIAM Ser. Optim. 17, SIAM, Philadelphia (2014)

  11. Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM J. Optim. 28(1), 849–874 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Attouch, H., Cabot, A., Chbani, Z., Riahi, H.: Accelerated forward-backward algorithms with perturbations. Appl. Tikhonov Regul. JOTA 179(1), 1–36 (2018)

    MATH  Google Scholar 

  13. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems with Hessian driven damping. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01591-1

  14. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. Ser. B 168, 123–175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Attouch, H., Fadili, J., Kungurtsev, V.: On the effect of perturbations, errors in first-order optimization methods with inertia and Hessian driven damping, arXiv:2106.16159v1 [math.OC] (2021)

  16. Attouch, H., Peypouquet, J., Redont, P.: Fast convex minimization via inertial dynamics with Hessian driven damping. J. Differ. Equ. 261(10), 5734–5783 (2016)

    Article  MATH  Google Scholar 

  17. Aujol, J.-F., Dossal, Ch.: Stability of over-relaxations for the Forward-Backward algorithm, application to FISTA. SIAM J. Optim. 25, 2408–2433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aujol, J.-F., Dossal, Ch., Fort, G., Moulines, E.: Rates of Convergence of Perturbed FISTA-based algorithms. (2019). hal-02182949. https://hal.archives-ouvertes.fr/hal-02182949

  19. Aujol, J.-F., Dossal, Ch., Rondepierre, A.: Convergence rates of the Heavy-Ball method for quasi-strongly convex optimization. (2021). hal-02545245v2. https://hal.archives-ouvertes.fr/hal-02545245v2

  20. Bach, F.: Statistical machine learning and convex optimization, StatMathAppli 2017, Fréjus - September (2017)

  21. Balti, M., May, R.: Asymptotic for the perturbed heavy ball system with vanishing damping term. Evol. Equ. Control Theory 6, 177–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bauschke, H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert spaces. CMS Books in Math, Springer (2011)

    Book  MATH  Google Scholar 

  23. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bello-Cruz, Y., Gonalves, M.L.N., Krislock, N.: On inexact accelerated proximal gradient methods with relative error rules, preprint arXiv:2005.03766, (2020)

  25. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc. 362(6), 3319–3363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boţ, R.I., Csetnek, E.R.: Second order forward-backward dynamical systems for monotone inclusion problems. SIAM J. Control. Optim. 54(3), 1423–1443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Boţ, R.I., Csetnek, E.R., László, S.C.: A second order dynamical approach with variable damping to nonconvex smooth minimization. Appl. Anal. 99(3), 361–378 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boţ, R.I., Csetnek, E.R., Laszló, S.C.: Tikhonov regularization of a second order dynamical system with Hessian damping. Math. Program. 189, 151–186 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brézis, H.: Opérateurs maximaux monotones dans les espaces de Hilbert équations d’évolution. Lecture Notes, vol. 5. North-Holland, Amsterdam (1972)

  30. Castera, C., Bolte, J., Févotte, C., Pauwels, E.: An Inertial Newton Algorithm For Deep Learning (2019). https://hal.inria.fr/hal-02140748/

  31. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. van den Dries, L.: Tame Topology and o-Minimal Structures, London Mathematical Society, Lecture Note Series, vol. 248. Cambridge University Press, Cambridge, UK (1998)

    Book  Google Scholar 

  34. Haraux, A., Ghisi, M., Gambino, M.: Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation. Trans. Amer. Math. Soc. 368, 2039–2079 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Hiriat-Urruty, J.-B.: How to Regularize a Difference of Convex Functions. J. Math. Anal. Appl. 162, 196–209 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ioffe, A.: An invitation to tame optimization. SIAM J. Optim. 19(4), 1894–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, D.: Accelerated proximal point method for maximally monotone operators. Math. Program. (2021)

  38. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) Programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, T., Jordan, M.I.: A control-theoretic perspective on optimal high-order optimization, (2019) arXiv:1912.07168v1

  40. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Soviet Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  41. Nesterov, Y.: Introductory Lectures on Convex Optimization: Appl. Optim. 87, Kluwer, Boston, MA, (2004)

  42. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17(3–4), 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Pham Dinh, T., Souad, E.B.: Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients. J.B. Hiriart-Urruty (ed.) Fermat Days 85: Mathematics for Optimization, North-Holland Math. Stud. vol 129, pp. 249–271 (1986)

  44. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Z. Vylist Math. Fiz. 4, 1–17 (1964)

    MathSciNet  Google Scholar 

  45. Schmidt, M., Le Roux, N., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: NIPS’11-25, (2011), Granada. HAL inria-00618152v3

  46. Shi, B., Du, S. S., Jordan, M. I., Su, W. J.: Understanding the acceleration phenomenon via high-resolution differential equations (2018). arXiv:1810.08907 [math.OC]

  47. Solodov, M.V., Zavriev, S.K.: Error stability properties of generalized gradient-type algorithms. J. Optim. Theory Appl. 98, 663–680 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient method. J. Mach. Learn. Res. 17, 1–43 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Toland, J.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66, 399–415 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. Villa, S., Salzo, S., Baldassarres, L., Verri, A.: Accelerated and inexact forward-backward. SIAM J. Optim. 23, 1607–1633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Adly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. All authors have reviewed and approved the final manuscript and its submission to the journal.

Additional information

This paper is dedicated to the memory of Prof. Asen L. Dontchev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adly, S., Attouch, H. & Le, M.H. First order inertial optimization algorithms with threshold effects associated with dry friction. Comput Optim Appl 86, 801–843 (2023). https://doi.org/10.1007/s10589-023-00509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00509-9

Keywords

Mathematics Subject Classification

Navigation