Skip to main content
Log in

Conditional gradient method for vector optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a conditional gradient method for solving constrained vector optimization problems with respect to a partial order induced by a closed, convex and pointed cone with nonempty interior. When the partial order under consideration is the one induced by the non-negative orthant, we regain the method for multiobjective optimization recently proposed by Assunção et al. (Comput Optim Appl 78(3):741–768, 2021). In our method, the construction of the auxiliary subproblem is based on the well-known oriented distance function. Three different types of step size strategies (Armijo, adaptative and nonmonotone) are considered. Without convexity assumption related to the objective function, we obtain the stationarity of accumulation points of the sequences produced by the proposed method equipped with the Armijo or the nonmonotone step size rule. To obtain the convergence result of the method with the adaptative step size strategy, we introduce a useful cone convexity condition which allows us to circumvent the intricate question of the Lipschitz continuity of Jocabian for the objective function. This condition helps us to generalize the classical descent lemma to the vector optimization case. Under convexity assumption for the objective function, it is proved that all accumulation points of any generated sequences obtained by our method are weakly efficient solutions. Numerical experiments illustrating the practical behavior of the methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availibility

No data and materials.

Code Availability

No code.

Notes

  1. The performance profiles were in this paper generated using the MATLAB code perfprof.m freely available in the website https://github.com/higham/matlab-guide-3ed/blob/master/perfprof.m.

References

  1. John, J.: Vector Optimization: Theory, Applications and Extensions, 2nd edn. Springer, Berlin (2011)

    Google Scholar 

  2. Rangaiah, G.P., Bonilla-Petriciolet, A.: Multi-Objective Optimization in Chemical Engineering: Developments and Applications. Wiley (2013)

  3. Zopounidis, C., Galariotis, E., Doumpos, M., Sarri, S., Andriosopoulos, K.: Multiple criteria decision aiding for finance: an updated bibliographic survey. Eur. J. Oper. Res. 247(2), 339–348 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Fliege, J.: OLAF-a general modeling system to evaluate and optimize the location of an air polluting facility. OR Spektrum. 23(1), 117–136 (2001)

    MATH  Google Scholar 

  5. Tavana, M., Sodenkamp, M.A., Suhl, L.: A soft multi-criteria decision analysis model with application to the European Union enlargement. Ann. Oper. Res. 181(1), 393–421 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Jin, Y.C.: Multi-Objective Machine Learning. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  7. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Wang, J., Hu, Y., Wai Yu, C.K., Li, C., Yang, X.: Extended Newton methods for multiobjective optimization: majorizing function technique and convergence analysis. SIAM J. Optim. 29(3), 2388–2421 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Da Cruz Neto, J.X., Da Silva, G.J.P., Ferreira, O.P., Lopes, J.O.: A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54(3), 461–472 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Qu, S.J., Goh, M., Chan, F.T.S.: Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39(5), 397–399 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Carrizo, G.A., Lotito, P.A., Maciel, M.C.: Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem. Math. Program. 159(1), 339–369 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization problems. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Fukuda, E.H., Graña Drummond, L.M.: Inexact projected gradient method for vector optimization. Comput. Optim. Appl. 54(3), 473–493 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Aliprantis, C.D., Florenzano, M., Martins da Rocha, V.F., Tourky, R.: Equilibrium analysis in financial markets with countably many securities. J. Math. Econom. 40(6), 683–699 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Aliprantis, C.D., Florenzano, M., Tourky, R.: General equilibrium analysis in ordered topological vector spaces. J. Math. Econom. 40(3–4), 247–269 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Gutiérrez, C., Jiménez, B., Novo, V.: On approximate solutions in vector optimization problems via scalarization. Comput. Optim. Appl. 35(3), 305–324 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Ansari, Q.H., Köbis, E., Yao, J.C.: Vector Variational Inequalities and Vector Optimization. Springer International Publishing AG, Cham (2018)

    MATH  Google Scholar 

  20. Villacorta, K.D.V., Oliveira, P.R.: An interior proximal method in vector optimization. Eur. J. Oper. Res. 214(3), 485–492 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Chen, Z.: Generalized viscosity approximation methods in multiobjective optimization problems. Comput. Optim. Appl. 49(1), 179–192 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Bello Cruz, J.Y.: A subgradient method for vector optimization problems. SIAM J. Optim. 23(4), 2169–2182 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Lucambio Pérez, L.R., Prudente, L.F.: Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28(3), 2690–2720 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Gonçalves, M.L.N., Prudente, L.F.: On the extension of the Hager-Zhang conjugate gradient method for vector optimization. Comput. Optim. Appl. 76(3), 889–916 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    MathSciNet  MATH  Google Scholar 

  26. Fletcher, R.: Unconstrained Optimization, Pract. Methods Optim. 1, Wiley, New York (1980)

  27. Dai, Y.H., Yuan, Y.X.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Polak, E., Ribiére, G.: Note sur la convergence de méthodes de directions conjuguées. Rev. Franeçaise Inform. Rech. Opér Sér Rouge. 3(16), 35–43 (1969)

    MATH  Google Scholar 

  29. Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)

    MATH  Google Scholar 

  30. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Standards 49(6), 409–436 (1952)

    MathSciNet  MATH  Google Scholar 

  31. Hager, W.W., Zhang, H.C.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170–192 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Fukuda, E.H., Graña Drummond, L.M.: A survey on multiobjective descent methods. Pesquisa Oper. 34(3), 585–620 (2014)

    Google Scholar 

  33. Graña Drummond, L.M., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for vector optimization. Optimization 63(5), 661–677 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Lu, F., Chen, C.R.: Newton-like methods for solving vector optimization problems. Appl. Anal. 93(8), 1567–1586 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Chen, Z., Huang, H.Q., Zhao, K.Q.: Approximate generalized proximal-type method for convex vector optimization problem in Banach spaces. Comput. Math. Appl. 57(7), 1196–1203 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Chuong, T.D., Yao, J.C.: Steepest descent methods for critical points in vector optimization problems. Appl. Anal. 91(10), 1811–1829 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Chuong, T.D.: Newton-like for efficient solutions in vector optimization. Comput. Optim. Appl. 54(3), 495–516 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Boţ, R.I., Grad, S.-M.: Inertial forward backward methods for solving vector optimization problems. Optimization 67(7), 959–974 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Gu, N.Z., Mo, J.T.: Incorporating nonmonotone strategies into the trust region method for unconstrained optimization. Comput. Math. Appl. 55(9), 2158–2172 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Ahookhosh, M., Ghaderi, S.: On efficiency of nonmonotone Armijo-type line searches. Appl. Math. Model. 43, 170–190 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Mita, K., Fukuda, E.H., Yamashita, N.: Nonmonotone line searches for unconstrained multiobjective optimization problems. J. Global Optim. 75(1), 63–90 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Mahdavi-Amiri, N., Salehi Sadaghiani, F.: A superlinearly convergent nonmonotone quasi-Newton method for unconstrained multiobjective optimization. Optim. Methods Softw. 35(6), 1223–1247 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Fazzio, N.S., Schuverdt, M.L.: Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems. Optim. Lett. 13(6), 1365–1379 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Carrizo, G.A., Fazzio, N.S., Schuverdt, M.L.: A nonmonotone projected gradient method for multiobjective problems on convex sets. J. Oper. Res. Soc. China. (2022). https://doi.org/10.1007/s40305-022-00410-y

    Article  Google Scholar 

  48. Ramirez, V.A., Sottosanto, G.N.: Nonmonotone trust region algorithm for solving the unconstrained multiobjective optimization problems. Comput. Optim. Appl. 81(3), 769–788 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Assunção, P.B., Ferreira, O.P., Prudente, L.F.: Conditional gradient method for multiobjective optimization. Comput. Optim. Appl. 78(3), 741–768 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Hiriart-Urruty, J.B.: Tangent cone, generalized gradients and mathematical programming in Banach spaces. Mathe. Oper. Res. 4(1), 79–97 (1979)

    MathSciNet  MATH  Google Scholar 

  51. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control. Optim. 42(3), 1071–1086 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42(2), 330–348 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Liu, C.G., Ng, K.F., Yang, W.H.: Merit functions in vector optimization. Math. Program. Ser. A. 119(2), 215–237 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Ansari, Q.H., Köbis, E., Sharma, P.K.: Characterizations of multiobjective robustness via oriented distance function and image space analysis. J. Optim. Theory Appl. 181(3), 817–839 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Gao, Y., Hou, S.H., Yang, X.M.: Existence and optimality conditions for approximate solutions to vector optimization problems. J. Optim. Theory Appl. 152(1), 97–120 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Zhou, Z.A., Chen, W., Yang, X.M.: Scalarizations and optimality of constrained set-valued optimization using improvement sets and image space analysis. J. Optim. Theory Appl. 183(3), 944–962 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Ansari, Q.H., Sharma P.K.: Set Order Relations, Set Optimization, and Ekeland’s Variational Principle, in Optimization, Variational Analysis and Applications, Edited by V. Laha, P. Maréchal and S. K. Mishra, Springer Proceedings in Mathematics and Statistics 355, Springer Nature Singapore Pvt. Ltd., pp. 103–165, (2021)

  58. Ansari, Q.H., Sharma, P.K.: Some properties of generalized oriented distance function and their applications to set optimization problems. J. Optim. Theory Appl. 193(1–3), 247–279 (2022)

    MathSciNet  MATH  Google Scholar 

  59. Bolte, J., Sabach, S., Teboulle, M., Vaisbourd, Y.: First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems. SIAM J. Optim. 28(3), 2131–2151 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1996)

    MATH  Google Scholar 

  61. Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints. Comput. Optim. Appl. 69(2), 267–296 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Belegundu, A.D., Murthy, D.V., Salagame, R.R., Constants, E.W.: Multi-objective optimization of laminated ceramic composites using genetic algorithms. In: Proc. 5th AIAA/NASA/USAF/ISSMO Symp. Multidisciplinary Analysis and Optimization, 1015–1022 (1994)

  63. Tharwat, A., Houssein, E.H., Ahmed, M.M., Hassanien, A.E., Gabel, T.: MOGOA algorithm for constrained and unconstrained multi-objective optimization problems. Appl. Intell. 48(8), 2268–2283 (2018)

    Google Scholar 

  64. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  65. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, chapter 6, pp. 105–145. Springer (2005)

  66. Schutze, O., Lara, A., Coello, C.A.: The directed search method for unconstrained multi-objective optimization problems. Technical report TR-OS-2010-01, http://delta.cs.cinvestav.mx/~schuetze/technical_20reports/TR-OS-2010-01.pdf.gz, (2010)

  67. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    MathSciNet  MATH  Google Scholar 

  68. Custódio, A.L., Madeira, J.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their constructive comments and suggestions to improve the quality and contributions of the paper. Also, we would like to thank Prof. L.P. Tang for the helpful suggestions and discussions during the writing of this paper.

Funding

This research was supported by the Major Program of the National Natural Science Foundation of China (11991020, 11991024), the National Natural Science Foundation of China (11971084, 12001072, 12271067), NSFC-RGC (Hong Kong) Joint Research Program (12261160365), the Team Project of Innovation Leading Talent in Chongqing (CQYC20210309536), the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1318, cstc2019jcyj-zdxmX0016), the China Postdoctoral Science Foundation Project (2019M653332).

Author information

Authors and Affiliations

Authors

Contributions

WC conceived of the study and drafted the manuscript. XY participated in its analysis and coordination and helped to draft the manuscript. YZ participated in its analysis and was responsible for checking the content and grammar of the article.

Corresponding author

Correspondence to Xinmin Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yang, X. & Zhao, Y. Conditional gradient method for vector optimization. Comput Optim Appl 85, 857–896 (2023). https://doi.org/10.1007/s10589-023-00478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00478-z

Keywords

Navigation