Skip to main content
Log in

A priori error estimate of perturbation method for optimal control problem governed by elliptic PDEs with small uncertainties

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the first-order and second-order perturbation approximation schemes for an optimal control problem governed by elliptic PDEs with small uncertainties. The optimal control minimizes the expectation of a cost functional with a deterministic constrained control. First, using a perturbation method, we expand the state and co-state variables up to a certain order with respect to a parameter that controls the magnitude of uncertainty in the input. Then we take the expansions into the known deterministic parametric optimality system to derive the first-order and second-order optimality systems which are both deterministic problems. After that, the two systems are discretized by finite element method directly. The strong and weak error estimates are derived for the state, co-state and control variables, respectively. We finally illustrate the theoretical results by two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Adams, R.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Babuška, I., Chatzipantelidis, P.: On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 191, 4093–4122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Liu, K., Tempone, R.: Solving stochastic partial differential equations based on the experimental data. Math. Models Methods Appl. Sci. 13(3), 415–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbu, V.: Optimal control for variational inequalities. Research Notes in Mathematics vol.100. Pitman, London (1984)

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer, New York (2000)

    Book  MATH  Google Scholar 

  8. Cacuci, D.G.: Sensitivity and Uncertainty Analysis: Theory, vol. 1. Chapman and Hall/CRC, Boca Raton (2003)

    Book  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Elemnet Method for Elliptic Problems. North-Holland Publ, Amsterdam (1978)

    Google Scholar 

  10. Doltsinis, I.: Inelastic deformation processes with random parameters methods of analysis and design. Comput. Methods Appl. Mech. Eng. 192, 2405–2423 (2003)

    Article  MATH  Google Scholar 

  11. Du, N., Shi, J.T., Liu, W.B.: An effective gradient projection method for stochastic optimal control. Int. J. Numer. Anal. Model. 10(4), 757–774 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Fishman, G.: Monte Carlo, concepts, algorithms, and applications. Springer, New York (1996)

    MATH  Google Scholar 

  13. Fox, B.L.: Strategies for Quasi-Monte Carlo. Kluwer Academic, Norwell (1999)

    Book  Google Scholar 

  14. Fursikov, A.V.: Optimal Control of Distributed Systems, Theory and Applications. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  15. Ge, L., Sun, T.J.: A sparse grid stochastic collocation and finite volume element method for constrained optimal control problem governed by random elliptic equations. J. Comput. Math. 36(2), 310–330 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ge, L., Sun, T.J.: A sparse grid stochastic collocation discontinuous Galerkin method for constrained optimal control problem governed by random convection dominated diffusion equations. Numer. Funct. Anal. Opt. 40(7), 763–797 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glowinski, R., Lions, J.L.: Exact and Approximate Controllability for Distributed Parameter Systems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Guignard, D.: Partial differential equations with random input AATA: a perturbation approach. Arch. Comput. Method. E. 26, 1313–1377 (2019)

    Article  MathSciNet  Google Scholar 

  19. Guignard, D., Nobile, F., Picasso, M.: A posteriori error estimation for elliptic partial differential equations with small uncertainties. Numer. Method. Part. D. E. 32, 175–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunzburger, M.D., Lee, H.C., Lee, J.: Error estimates of stochastic optimal Neumann boundary control problems. SIAM J. Numer. Anal. 49(4), 1532–1552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hou, L.S., Lee, J., Manouzi, H.: Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs. J. Math. Anal. Appl. 384, 87–103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kamiński, M.: On generalized stochastic perturbation-based finite elements. Commun. Numer. Methods. Eng. 22(1), 23–31 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kamiński, M.: Generalized stochastic perturbation technique in engineering computations. Math. Comput. Model. 51, 272–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method: Basic Perturbation Technieque and Computer Implementation. Wiley, Chichester (1992)

    MATH  Google Scholar 

  25. Lee, H.C., Lee, J.: A stochastic Galerkin method for stochastic control problems. Commun. Comput. Phys. 14(1), 77–106 (2013)

    MathSciNet  Google Scholar 

  26. Lions, J.L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris (1968)

    MATH  Google Scholar 

  27. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  28. Liu, W.B., Tiba, D.: Error estimates for the finite element approximation of a class of nonlinear optimal control problems. J. Numer. Funct. Optim. 22, 953–972 (2001)

    Article  MATH  Google Scholar 

  29. Liu, W.B., Yan, N.N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 73–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Series in Information and Computational Science, vol. 41. Science Press, Beijing (2008)

    Google Scholar 

  31. Liu, W.B., Yang, D.P., Yuan, L., Ma, C.Q.: Finite elemnet approximation of an optimal control problem with integral state constraint. SIAM J. Numer. Anal. 48(3), 1163–1185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, New York (2014)

    Book  MATH  Google Scholar 

  33. Niederreiter, H., Hellekalek, P., Larcher, G., Zinterhof, P.: Monte Carlo and Quasi-Monte Carlo Methods. Springer, Berlin (1998)

    MATH  Google Scholar 

  34. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Øksendal, B.: Stochastic Differential Equations: An Introduction with Application, 5th edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  37. Papadrakakis, M., Papadopoulos, V.: Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation. Comput. Methods Appl. Mech. Eng. 134, 325–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, W.F., Sun, T.J., Gong, B.X., Liu, W.B.: Stochastic Galerkin method for constrained optimal control problem governed by an elliptic integro-differential PDE with stochastic coefficients. Int. J. Numer. Anal. Mod. 12(4), 593–616 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Sun, T.J.: Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem. Int. J. Numer. Anal. Model. 7(1), 87–107 (2010)

    MathSciNet  Google Scholar 

  40. Sun, T.J., Ge, L., Liu, W.B.: Equivalent a posteriori error estimates for a constrained optimal control problem governed by parabolic equations. Int. J. Numer. Anal. Model. 10(1), 1–23 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Sun, T.J., Shen, W.F., Gong, B.X., Liu, W.B.: A priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained control. J. Sci. Comput. 67(2), 405–431 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Susanne, C., Brenner, L., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  43. Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyvaskyla Press, Finland (1995)

    Google Scholar 

  44. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, vol. 112. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  45. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiu, D., Lucor, D., Su, C.H., Karniadakis, G.E.: Stochastic modeling of flow-structure interactions using generalized polynomial chaos. ASME J. Fluid Eng. 124, 51–69 (2002)

    Article  Google Scholar 

  48. Yan, N.N., Zhou, Z.J.: A priori and a posteriori error estimates of streamline diffusion finite element method for optimal control problem governed by convection dominated diffusion equation. Numer. Math. Theor. Meth. Appl. 1(3), 297–320 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Yan, N.N., Zhou, Z.J.: A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation. J. Comput. Appl. Math. 223, 198–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that have helped to improve the quality of this paper.

Funding

This work is supported by the Natural Science Foundation of China (Grant Nos. 11871312, 12131014), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA007) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongjun Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Sun, T. A priori error estimate of perturbation method for optimal control problem governed by elliptic PDEs with small uncertainties. Comput Optim Appl 81, 889–921 (2022). https://doi.org/10.1007/s10589-022-00352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00352-4

Keywords

Navigation