Skip to main content
Log in

Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A method is developed for solving bang-bang and singular optimal control problems using adaptive Legendre–Gauss–Radau collocation. The method is divided into several parts. First, a structure detection method is developed that identifies switch times in the control and analyzes the corresponding switching function for segments where the solution is either bang-bang or singular. Second, after the structure has been detected, the domain is decomposed into multiple domains such that the multiple-domain formulation includes additional decision variables that represent the switch times in the optimal control. In domains classified as bang-bang, the control is set to either its upper or lower limit. In domains identified as singular, the objective function is augmented with a regularization term to avoid the singular arc. An iterative procedure is then developed for singular domains to obtain a control that lies in close proximity to the singular control. The method is demonstrated on four examples, three of which have either a bang-bang and/or singular optimal control while the fourth has a smooth and nonsingular optimal control. The results demonstrate that the method of this paper provides accurate solutions to problems whose solutions are either bang-bang or singular when compared against previously developed mesh refinement methods that are not tailored for solving nonsmooth and/or singular optimal control problems, and produces results that are equivalent to those obtained using previously developed mesh refinement methods for optimal control problems whose solutions are smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, New York (2010)

    Book  Google Scholar 

  2. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2002). https://doi.org/10.1137/S0036144504446096

    Article  MathSciNet  MATH  Google Scholar 

  3. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide optimization. Comput. Chem. Eng. 33(3), 575–582 (2008). https://doi.org/10.1016/j.compchemeng.2008.08.006

    Article  Google Scholar 

  4. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control. Dyn. 29(6), 1435–1440 (2006). https://doi.org/10.2514/1.20478

    Article  Google Scholar 

  5. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010). https://doi.org/10.1016/j.automatica.2010.06.048

    Article  MathSciNet  MATH  Google Scholar 

  6. Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47(4), 829–837 (2011). https://doi.org/10.1016/j.automatica.2011.01.085

    Article  MathSciNet  MATH  Google Scholar 

  7. Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a radau pseudospectral method. Comput. Optim. Appl. 49(2), 335–358 (2011). https://doi.org/10.1007/s10589-009-9291-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Rao, A.V., Benson, D.A., Darby, C.L., Francolin, C., Patterson, M.A., Sanders, I., Huntington, G.T.: Algorithm 902: GPOPS. A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans. Math. Software 37(2) (2010). https://doi.org/10.1145/1731022.1731032

  9. Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput. Optim. Appl. 41(1), 81–126 (2008). https://doi.org/10.1007/s10589-007-9098-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Patterson, M.A., Hager, W.W., Rao, A.V.: A \(ph\) mesh refinement method for optimal control. Opt. Control Appl. Methods 36(4), 398–421 (2015). https://doi.org/10.1002/oca.2114

    Article  MathSciNet  MATH  Google Scholar 

  11. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995). https://doi.org/10.1109/9.467672

    Article  MathSciNet  MATH  Google Scholar 

  12. Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a gauss collocation method applied to unconstrained optimal control. J. Optim. Theory Appl. 169(3), 801–824 (2016). https://doi.org/10.1007/s10957-016-0929-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Hager, W.W., Hou, H., Rao, A.V.: Lebesgue constants arising in a class of collocation methods. IMA J. Numer. Anal. 37(4), 1884–1901 (2017). https://doi.org/10.1093/imanum/drw060

    Article  MathSciNet  MATH  Google Scholar 

  14. Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Gauss collocation method applied to constrained optimal control. SIAM J. Control. Optim. 56, 1386–1411 (2018). https://doi.org/10.1137/16M1096761

    Article  MathSciNet  MATH  Google Scholar 

  15. Hager, W.W., Hou, H., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Radau hp-collocation method applied to constrained optimal control. Comput. Optim. Appl. 74, 274–314 (2019). https://doi.org/10.1007/s10589-019-00100-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Franklin Inst. 352(10), 4081–4106 (2015). https://doi.org/10.1016/j.jfranklin.2015.05.028

    Article  MathSciNet  MATH  Google Scholar 

  17. Gong, Q., Fahroo, F., Ross, I.M.: Spectral algorithm for pseudospectral methods in optimal control. J. Guid. Control. Dyn. 31(3), 460–471 (2008). https://doi.org/10.2514/1.32908

    Article  Google Scholar 

  18. Miller, A.T., Hager, W.W., Rao, A.V.: Mesh refinement method for solving optimal control problems with nonsmooth solutions using jump function approximations. Opt. Control Appl. Methods (2021). https://doi.org/10.1002/oca.2719

    Article  MathSciNet  MATH  Google Scholar 

  19. Schlegel, M., Marquardt, W.: Direct sequential dynamic optimization with automatic switching structure detection. IFAC Proc. Vol. 37(9), 419–424 (2004). https://doi.org/10.1016/s1474-6670(17)31845-1

    Article  Google Scholar 

  20. Schlegel, M., Marquardt, W.: Detection and exploitation of the control switching structure in the solution of dynamic optimization problems. J. Process Control 16(3), 275–290 (2006). https://doi.org/10.1016/j.jprocont.2005.06.008

    Article  Google Scholar 

  21. Wang, P., Yang, C., Yuan, Z.: The combination of adaptive pseudospectral method and structure detection procedure for solving dynamic optimization problems with discontinuous control profiles. Ind. Eng. Chem. Res. 53(17), 7066–7078 (2014). https://doi.org/10.1021/ie404148j

    Article  Google Scholar 

  22. Chen, W., Biegler, L.T.: Nested direct transcription optimization for singular optimal control problems. AIChE J. 62(10), 3611–3627 (2016). https://doi.org/10.1002/aic.15272

    Article  Google Scholar 

  23. Chen, W., Ren, Y., Zhang, G., Biegler, L.T.: A simultaneous approach for singular optimal control based on partial moving grid. AIChE J. 65(6), e16584 (2019). https://doi.org/10.1002/aic.16584

    Article  Google Scholar 

  24. Darby, C.L., Hager, W.W., Rao, A.V.: An hp-adaptive pseudospectral method for solving optimal control problems. Opt. Control Appl. Methods 32(4), 476–502 (2010). https://doi.org/10.1002/oca.957

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using decay rates of legendre polynomial coefficients. IEEE Trans. Control Syst. Technol. 26(4), 1475–1483 (2018). https://doi.org/10.1109/tcst.2017.2702122

    Article  Google Scholar 

  26. Agamawi, Y.M., Hager, W.W., Rao, A.V.: Mesh refinement method for solving bang-bang optimal control problems using direct collocation. AIAA Scitech 2020 Forum 0378 (2020). https://doi.org/10.2514/6.2017-1506

  27. Aghaee, M., Hager, W.W.: The switch point algorithm. SIAM J. Control. Optim. 59(4), 2570–2593 (2021)

    Article  MathSciNet  Google Scholar 

  28. Kaya, C., Noakes, J.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117(1), 69–92 (2003). https://doi.org/10.1023/a:1023600422807

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehrpouya, M.A., Khaksar-e Oshagh, M.: An efficient numerical solution for time switching optimal control problems. Comput.l Methods Differ. Equ. 9(1) (2021). https://doi.org/10.22034/cmde.2020.33529.1542

  30. Aronna, M.S., Bonnans, J.F., Martinon, P.: A shooting algorithm for optimal control problems with singular Arcs. J. Optim. Theory Appl. 158(2), 419–459 (2013). https://doi.org/10.1007/s10957-012-0254-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Mehra, R., Davis, R.: A generalized gradient method for optimal control problems with inequality constraints and singular arcs. IEEE Trans. Autom. Control 17(1), 69–79 (1972). https://doi.org/10.1109/tac.1972.1099881

    Article  MATH  Google Scholar 

  32. Jacobson, D., Gershwin, S., Lele, M.: Computation of optimal singular controls. IEEE Trans. Autom. Control 15(1), 67–73 (1970). https://doi.org/10.1109/tac.1970.1099360

    Article  MathSciNet  Google Scholar 

  33. Maurer, H.: Numerical solution of singular control problems using multiple shooting techniques. J. Optim. Theory Appl. 18(2), 235–257 (1976). https://doi.org/10.1007/bf00935706

    Article  MathSciNet  MATH  Google Scholar 

  34. Andrés-Martínez, O., Flores-Tlacuahuac, A., Kameswaran, S., Biegler, L.T.: An efficient direct/indirect transcription approach for singular optimal control. AIChE J. 65(3), 937–946 (2018). https://doi.org/10.1002/aic.16487

    Article  Google Scholar 

  35. Caponigro, M., Ghezzi, R., Piccoli, B., Trélat, E.: Regularization of chattering phenomena via bounded variation controls. IEEE Trans. Autom. Control 63(7), 2046–2060 (2018). https://doi.org/10.1109/TAC.2018.2810540

    Article  MathSciNet  MATH  Google Scholar 

  36. Mall, K., Grant, M.J., Taheri, E.: Uniform trigonometrization method for optimal control problems with control and state constraints. J. Spacecr. Rocket. 57(5), 995–1007 (2020). https://doi.org/10.2514/1.a34624

    Article  Google Scholar 

  37. Fabien, B.C.: Indirect solution of inequality constrained and singular optimal control problems via a simple continuation method. J. Dyn. Syst. Meas. Contr. 136(2), 021003 (2013). https://doi.org/10.1115/1.4025596

    Article  Google Scholar 

  38. Andrés-Martínez, O., Biegler, L.T., Flores-Tlacuahuac, A.: An indirect approach for singular optimal control problems. Comput. Chem. Eng. 139, (2020). https://doi.org/10.1016/j.compchemeng.2020.106923

  39. Maga, L., Reverberi, A., et al.: A pattern recognition approach to the solution of optimal singular control problems. Chem. Eng. J. 68(1), 35–40 (1997). https://doi.org/10.1016/S1385-8947(97)00068-5

    Article  Google Scholar 

  40. Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  41. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, North Chelmsford (2004)

    Google Scholar 

  42. Bryson, A.E., Ho, Y.: Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere Publishing Corporation, London (1975)

    Google Scholar 

  43. Schättler, H., Ledzewicz, U.: Geometric Optimal Control: Theory, Methods and Examples, vol. 38. Springer, Berlin (2012)

    Book  Google Scholar 

  44. Kelley, H., Kopp, R.E., Moyer, H.G.: Topics in Optimization, edited by Leitman (1967)

  45. Kopp, R.E., Moyer, H.G.: Necessary conditions for singular extremals. AIAA J. 3(8), 1439–1444 (1965). https://doi.org/10.2514/3.3165

    Article  MATH  Google Scholar 

  46. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005). https://doi.org/10.1137/s0036142903435259

    Article  MathSciNet  MATH  Google Scholar 

  47. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980). https://doi.org/10.1137/0717021

    Article  MathSciNet  MATH  Google Scholar 

  48. Patterson, M.A., Rao, A.V.: GPOPS-II. ACM Trans. Math. Software 41(1), 1–37 (2014). https://doi.org/10.1145/2558904

    Article  Google Scholar 

  49. Weinstein, M.J., Rao, A.V.: Algorithm 984: ADiGator, a toolbox for the algorithmic differentiation of mathematical functions in MATLAB using source transformation via operator overloading. ACM Trans. Math. Software 44(2), 1–25 (2017). https://doi.org/10.1145/3104990

    Article  MathSciNet  MATH  Google Scholar 

  50. Dolan, E.D., More, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Tech. rep., Argonne National Laboratory, Argonne, Illinois (2004). https://doi.org/10.2172/834714

Download references

Acknowledgements

The authors gratefully acknowledge support for this research from the U.S. National Science Foundation under grants DMS-1819002 and CMMI-2031213, the U.S. Office of Naval Research under grant N00014-19-1-2543, and from Lockheed-Martin Corporation under contract 4104177872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil V. Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pager, E.R., Rao, A.V. Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation. Comput Optim Appl 81, 857–887 (2022). https://doi.org/10.1007/s10589-022-00350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00350-6

Keywords

Navigation