Skip to main content
Log in

Clustering-based multipopulation approaches in MOEA/D for many-objective problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This work presents a new multipopulation framework for the multiobjective evolutionary algorithm based on decomposition (MOEA/D). In this case, clustering methods are used to reinforce mating restrictions by splitting the MOEA/D evolutionary population into multiple subpopulations of similar individuals for independent evolution. Using subpopulations leads to a natural parallel implementation by assigning each subpopulation to a different processor. The proposed multipopulation MOEA/D (mpMOEA/D) is evaluated using three clustering methods: k-Means, spectral-based clustering, and a method based on the shape of objective vectors. Additionally, a random partitioning approach is tested. Metrics measuring convergence, diversity and computation time are used to compare the results of the mpMOEA/D alternatives and the original MOEA/D using DTLZ and WFG problems with 3, 4, 8 and 10 objectives. Evaluation using the Wilcoxon test and the Friedman rank reveals the importance of using clustering procedures for population division, especially in cases with many objectives. The results show the viability of the clustering-based multipopulation approach in enhancing the performance of evolutionary methods for many-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  2. Kowatari, N., Oyama, A., Aguirre, H., Tanaka, K.: Analysis on population size and neighborhood recombination on many-objective optimization. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature - PPSN XII, pp. 22–31. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32964-7_3

    Chapter  Google Scholar 

  3. Ishibuchi, H., Shibata, Y.: An empirical study on the effect of mating restriction on the search ability of emo algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) Evolutionary Multi-criterion Optimization, pp. 433–447. Springer, Berlin (2003). https://doi.org/10.1007/3-540-36970-8_31

    Chapter  MATH  Google Scholar 

  4. Ishibuchi, H., Shibata, Y.: Mating scheme for controlling the diversity-convergence balance for multiobjective optimization. In: Deb, K. (ed.) Genetic and Evolutionary Computation–GECCO 2004, pp. 1259–1271. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-24854-5_121

    Chapter  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  6. von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 1(1), 1–50 (2014). https://doi.org/10.1007/s10589-014-9644-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 13 (2015). https://doi.org/10.1145/2792984

    Article  Google Scholar 

  8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  9. Coello Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  10. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003). https://doi.org/10.1109/TEVC.2003.810751

    Article  Google Scholar 

  11. von Lücken, C., Brizuela, C., Barán, B.: Clustering based parallel many-objective evolutionary algorithms using the shape of the objective vectors. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary Multi-criterion Optimization, pp. 50–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_4

    Chapter  Google Scholar 

  12. Branke, J., Schmeck, H., Deb, K., Reddy S, M.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 2, pp. 1952–19572 (2004). https://doi.org/10.1109/CEC.2004.1331135

  13. de Toro Negro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martin, J.M.: PSFGA: Parallel processing and evolutionary computation for multiobjective optimisation. Parallel Comput. 30(5), 721–739 (2004). https://doi.org/10.1016/j.parco.2003.12.012

    Article  Google Scholar 

  14. Hiroyasu, T., Miki, M., Watanabe, S.: The new model of parallel genetic algorithm in multi-objective optimization problems—divided range multi-objective genetic algorithm. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 1, pp. 333–3401 (2000). https://doi.org/10.1109/CEC.2000.870314

  15. Streichert, F., Ulmer, H., Zell, A.: Parallelization of multi-objective evolutionary algorithms using clustering algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-criterion Optimization, pp. 92–107. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-31880-4_7

    Chapter  MATH  Google Scholar 

  16. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  17. Wu, X., Kumar, V.: The Top Ten Algorithms in Data Mining. Chapman and Hall/CRC, Boca Raton (2009). https://doi.org/10.1201/9781420089653

    Book  Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  20. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014). https://doi.org/10.1162/EVCO_a_00109

    Article  Google Scholar 

  21. Zhang, J., Tang, Q., Li, P., Deng, D., Chen, Y.: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl. Soft. Comput. 47, 494–514 (2016). https://doi.org/10.1016/j.asoc.2016.06.022

    Article  Google Scholar 

  22. Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2016). https://doi.org/10.1109/TCYB.2015.2403849

    Article  Google Scholar 

  23. Xing, H., Wang, Z., Li, T., Li, H., Qu, R.: An improved MOEA/D algorithm for multi-objective multicast routing with network coding. Appl. Soft. Comput. 59, 88–103 (2017). https://doi.org/10.1016/j.asoc.2017.05.033

    Article  Google Scholar 

  24. Ho-Huu, V., Hartjes, S., Visser, H.G., Curran, R.: An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization. Expert Syst. Appl. 92, 430–446 (2018). https://doi.org/10.1016/j.eswa.2017.09.051

    Article  Google Scholar 

  25. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization, pp. 303–317. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13800-3_32

    Chapter  Google Scholar 

  26. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  27. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999). https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  28. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Proceedings of the 17th International Conference on Neural Information Processing Systems. NIPS’04, pp. 1601–1608. MIT Press, Cambridge (2004). https://doi.org/10.5555/2976040.2976241

  29. Ayed, A.B., Halima, M.B., Alimi, A.M.: Survey on clustering methods: Towards fuzzy clustering for big data. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 331–336 (2014). https://doi.org/10.1109/SOCPAR.2014.7008028

  30. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective hBOA, clustering, and scalability. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. GECCO’05, pp. 663–670. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1068009.1068122

  31. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  32. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. NIPS’01, pp. 849–856. MIT Press, Cambridge (2001). https://doi.org/10.5555/2980539.2980649

  33. Eğecioğlu, Ö.: Parametric approximation algorithms for high-dimensional Euclidean similarity. In: De Raedt, L., Siebes, A. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 79–90. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44794-6_7

    Chapter  Google Scholar 

  34. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proc. of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA’03, pp. 28–36. Society for Industrial and Applied Mathematics, USA (2003). https://doi.org/10.5555/644108.644113

  35. Zhang, Q., Li, H.: Multi-objective Evolutionary Algorithm Based on Decomposition C++ implementation. http://dces.essex.ac.uk/staff/qzhang/moead/MOEA-D-Continuous.rar. Accessed 30 Jun 2018

  36. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

  37. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. (2006). https://doi.org/10.1109/TEVC.2005.861417

    Article  MATH  Google Scholar 

  38. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009). https://doi.org/10.1109/TEVC.2008.925798

    Article  Google Scholar 

  39. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.810758

    Article  Google Scholar 

  40. Li, M., Yang, S., Liu, X.: Diversity comparison of Pareto front approximations in many-objective optimization. IEEE Trans. Cybern. 44(12), 2568–2584 (2014). https://doi.org/10.1109/TCYB.2014.2310651

    Article  Google Scholar 

  41. Wang, H., Jin, Y., Yao, X.: Diversity assessment in many-objective optimization. IEEE Trans. Cybern. 47(6), 1510–1522 (2017). https://doi.org/10.1109/TCYB.2016.2550502

    Article  Google Scholar 

  42. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in inverted generational distance for triangular linear Pareto front. IEEE Trans. Evol. Comput. 22(6), 961–975 (2018). https://doi.org/10.1109/TEVC.2017.2776226

    Article  Google Scholar 

  43. Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y.: Comparison of hypervolume, IGD and IGD+ from the viewpoint of optimal distributions of solutions. In: Deb, K., Goodman, E., Coello Coello, C.A., Klamroth, K., Miettinen, K., Mostaghim, S., Reed, P. (eds.) Evolutionary Multi-criterion Optimization, pp. 332–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_27

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the anonymous reviewers for their constructive comments and suggestions. The authors acknowledge support from CONACYT-PY, Project PINV18-949.

Funding

Partial financial support was received from CONACYT-PY (Paraguay), Project PINV18-949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian von Lücken.

Ethics declarations

Conflicts of interest

The author declared that there is no confict of interest.

Code availability

The code that supports the findings of this study is available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Lücken, C., Brizuela, C.A. & Barán, B. Clustering-based multipopulation approaches in MOEA/D for many-objective problems. Comput Optim Appl 81, 789–828 (2022). https://doi.org/10.1007/s10589-022-00348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00348-0

Keywords

Navigation