Skip to main content
Log in

Nonmonotone trust region algorithm for solving the unconstrained multiobjective optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this work an iterative method to solve the nonlinear multiobjective problem is presented. The goal is to find locally optimal points for the problem, that is, points that cannot simultaneously improve all functions when we compare the value at the point with those in their neighborhood. The algorithm uses a strategy developed in previous works by several authors but globalization is obtained through a nonmonotone technique. The construction of a new ratio between the actual descent and predicted descent plays a key role for selecting the new point and updating the trust region radius. On the other hand, we introduce a modification in the quadratic model used to determine if the point is accepted or not, which is fundamental for the convergence of the method. The combination of this strategy with a Newton-type method leads to an algorithm whose convergence properties are proved. The numerical experimentation is performed using a known set of test problems. Preliminary numerical results show that the nonmonotone method can be more efficient when it is compared to another algorithm that use the classic trust region approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

The authors declare that the data supporting the findings of this study are available within the article and its references. Nevertheless, the findings of this research are available at the request of the corresponding author Viviana A. Ramirez.

References

  1. Thomann, J., Eichfelder, G.: A trust region algorithm heterogeneous multiobjective optimization. Siam J. Optim. 29, 1017–1047 (2019)

    Article  MathSciNet  Google Scholar 

  2. Gobbi, M., Levi, F., Mastinu, G., Previati, G.: On the analytical derivation of the Pareto-optimal set with applications to structural design. Struct. Multidiscip. Optim. 51, 645–657 (2015)

    Article  MathSciNet  Google Scholar 

  3. Soleimani-Damaneh, M.: An optimization modelling for string selection in molecular biology using Pareto optimality. Appl. Math. Model. 35, 3887–3892 (2011)

    Article  MathSciNet  Google Scholar 

  4. Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer (2008)

  5. Kamal-Sayed, H., Ma, J., Tseung, H., Abdel-Rehim, A., Herman, M.G., Beltran, C.J.: Adaptive method for multicriteria optimization of intensity modulated proton therapy. Med. Phys. 45, 5643–52 (2018)

    Article  Google Scholar 

  6. Tapia, M., and Coello, C.: Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ, pp. 532–539 (2007)

  7. Ignatius, J., Mustafa, A.: A multiobjective sensitivity approach to training providers evaluation and quota allocation planning. Int. J. Inf. Technol. Decis. Mak. 10(1), 147–174 (2011)

    Article  Google Scholar 

  8. Şakar, C.T., Köksalan, M.: Effects of multiple criteria on portfolio optimization. Int. J. Inf. Technol. Decis. Mak. 13(1), 77–99 (2014)

    Article  Google Scholar 

  9. Cesarone, F., Scozzari, A., Tardella, F.: An optimization-diversification approach to portfolio selection. J. Glob. Optim. 76, 245–265 (2020)

    Article  MathSciNet  Google Scholar 

  10. Andreani, R., Ramirez, V.A., Santos, S.A., Secchin, L.D.: Bilevel optimization with a multiobjective problem in the lower level. Numer. Algorithms 81(3), 915–946 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ramirez, V.A.: Reformulação de um problemma de Programação não linear com restrições multiobjetivo. Tese de Doutorado, Instituto de Matemática, Estatística e Computação Científica, UNICAMP, Brasil (2015)

  12. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)

    Article  MathSciNet  Google Scholar 

  13. Carrizo, G., Lotito, P., Maciel, M.: Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem. Math. Prog. Ser. A 159, 339–369 (2016)

    Article  MathSciNet  Google Scholar 

  14. Villacorta, K.D.V., Oliveira, P.R., Soubeyran, A.: A Trust-Region Method for Unconstrained Multiobjective Problems with Applications. J. Optim. Theory Appl. 160, 865–889 (2014)

    Article  MathSciNet  Google Scholar 

  15. Thomann, J., Eichfelder, G.: Numerical results for the multiobjective trust region algorithm MHT. Data Brief 25, 104103 (2019)

    Article  Google Scholar 

  16. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  Google Scholar 

  17. Deng, N., Xiao, Y., Zhou, F.: Nonmonotonic trust region algorithm. J. Optim. Theory Appl. 76, 259–285 (1993)

    Article  MathSciNet  Google Scholar 

  18. Sun, W.: Nonmonotone trust region method for solving optimization problems. Appl. Math. Comput. 156, 159–174 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Mo, J., Zhang, K., Wei, Z.: A nonmonotone trust region method for unconstrained optimization. Appl. Math. Comput. 171, 371–384 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Ahookhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimization. Numer. Algorithms 59(4), 523–540 (2012)

    Article  MathSciNet  Google Scholar 

  21. Chen, J., Sun, W., Yang, Z.: A non-monotone retrospective trust-region method for unconstrained optimization. J. Ind. Manag. Optim. 9(4), 919–944 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Maciel, M.C., Mendonça, M.G., Verdiell, A.B.: Monotone and nonmonotone trust-region-based algorithms for large scale unconstrained optimization problems. Comput. Optim. Appl. 54, 27–43 (2013)

    Article  MathSciNet  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization, Springer Series in Operations Research. Springer, Berlin (1999)

    Google Scholar 

  24. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm, NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  25. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization, Kanpur Genetic Algorithms Lab. Indian Inst. Technol., Report 2 (2001)

  26. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Prog. Ser. A 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers, whose comments improved the presentation of the manuscript.

Funding

The funding was provided by Universidad Nacional del Comahue (AR) (Grant No. 04/E106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ramirez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, V.A., Sottosanto, G.N. Nonmonotone trust region algorithm for solving the unconstrained multiobjective optimization problems. Comput Optim Appl 81, 769–788 (2022). https://doi.org/10.1007/s10589-021-00346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00346-8

Keywords

Navigation